cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A066306 Prime numbers such that sum of digits equals product of digits.

Original entry on oeis.org

2, 3, 5, 7, 2141, 2411, 4211, 11251, 12511, 15121, 21221, 25111, 1112171, 1127111, 1172111, 1271111, 7112111, 11112811, 11128111, 11218111, 12111811, 12118111, 12181111, 18211111, 81111211, 81112111
Offset: 1

Views

Author

Labos Elemer, Dec 13 2001

Keywords

Examples

			2141 = p[323], 2*1*4*1 = 8 = 2+1+4+1.
		

Crossrefs

Primes from A034710.

Programs

  • Magma
    [NthPrime(n): n in [1..2*10^4] | &+Intseq(NthPrime(n)) eq &*Intseq(NthPrime(n))]; // Vincenzo Librandi, Nov 18 2015
  • Mathematica
    f[n_] := IntegerDigits[ Prime[n]]; Prime[ Select[ Range[ PrimePi[10^10]], Apply[Plus, f[ # ]] == Apply[Times, f[ # ]] & ]]

Extensions

More terms from Robert G. Wilson v, Dec 27 2001

A062035 Positive numbers whose product of digits is three times their sum.

Original entry on oeis.org

66, 159, 167, 176, 195, 235, 253, 325, 333, 352, 519, 523, 532, 591, 617, 671, 716, 761, 915, 951, 1168, 1186, 1236, 1263, 1326, 1362, 1618, 1623, 1632, 1681, 1816, 1861, 2136, 2163, 2316, 2361, 2613, 2631, 3126, 3162, 3216, 3261, 3612, 3621, 6118
Offset: 1

Views

Author

Amarnath Murthy, Jun 27 2001

Keywords

Examples

			235 belongs to the sequence as (2*3*5)/(2+3+5) = 30/10 = 3.
		

Crossrefs

Programs

  • Mathematica
    s3Q[n_]:=Module[{idn=IntegerDigits[n]},3Total[idn]==Times@@idn]; Select[Range[7000],s3Q]  (* Harvey P. Dale, Mar 20 2011 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==3*vecsum(d) \\ Mohammed Yaseen, Jul 29 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 3*sum(d)
    print([k for k in range(1, 7000) if ok(k)]) # Michael S. Branicky, Jul 29 2022

Extensions

Corrected and extended by Harvey P. Dale and Larry Reeves (larryr(AT)acm.org), Jul 04 2001
Offset corrected by Mohammed Yaseen, Jul 29 2022

A062036 Positive numbers whose product of digits is four times their sum.

Original entry on oeis.org

88, 189, 198, 246, 264, 426, 462, 624, 642, 819, 891, 918, 981, 1247, 1274, 1344, 1427, 1434, 1443, 1472, 1724, 1742, 2147, 2174, 2226, 2262, 2417, 2471, 2622, 2714, 2741, 3144, 3414, 3441, 4127, 4134, 4143, 4172, 4217, 4271, 4314, 4341, 4413, 4431
Offset: 1

Views

Author

Amarnath Murthy, Jun 27 2001

Keywords

Examples

			1344 belongs to the sequence as (1*3*4*4)/(1+3+4+4) = 48/12 = 4.
		

Crossrefs

Programs

  • Mathematica
    p4sQ[n_]:=Module[{idn=IntegerDigits[n]},Times@@idn/Total[idn]==4]; Select[Range[5000],p4sQ]  (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==4*vecsum(d) \\ Mohammed Yaseen, Jul 31 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 4*sum(d)
    print([k for k in range(1, 5000) if ok(k)]) # Michael S. Branicky, Jul 31 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
Offset corrected by Mohammed Yaseen, Jul 31 2022

A062037 Positive numbers whose product of digits is 6 times their sum.

Original entry on oeis.org

268, 286, 347, 374, 437, 473, 628, 682, 734, 743, 826, 862, 1269, 1296, 1348, 1356, 1365, 1384, 1438, 1483, 1536, 1563, 1629, 1635, 1653, 1692, 1834, 1843, 1926, 1962, 2169, 2196, 2237, 2273, 2327, 2334, 2343, 2372, 2433, 2619, 2691, 2723, 2732, 2916
Offset: 1

Views

Author

Amarnath Murthy, Jun 27 2001

Keywords

Examples

			2237 belongs to the sequence as (2*2*3*7)/(2+2+3+7) = 84/14 = 6.
		

Crossrefs

Programs

  • Mathematica
    p6sQ[n_]:=Module[{idn=IntegerDigits[n]},Times@@idn==6*Total[idn]]; Select[ Range[ 3000],p6sQ] (* Harvey P. Dale, Aug 17 2014 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==6*vecsum(d) \\ Mohammed Yaseen, Aug 02 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 6*sum(d)
    print([k for k in range(1, 3000) if ok(k)]) # Michael S. Branicky, Aug 02 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
Offset corrected by Mohammed Yaseen, Aug 02 2022

A062043 Positive numbers whose product of digits is 10 times their sum.

Original entry on oeis.org

459, 495, 549, 594, 945, 954, 1566, 1656, 1665, 2259, 2295, 2355, 2529, 2535, 2553, 2592, 2925, 2952, 3255, 3525, 3552, 5166, 5229, 5235, 5253, 5292, 5325, 5352, 5523, 5532, 5616, 5661, 5922, 6156, 6165, 6516, 6561, 6615, 6651, 9225, 9252, 9522
Offset: 1

Views

Author

Amarnath Murthy, Jun 28 2001

Keywords

Comments

A subsequence of A011535 as each term must include the digit 5. - Chai Wah Wu, Dec 09 2015

Examples

			594 belongs to the sequence as (5*9*4)/(5+9+4) = 180/18 = 10.
		

Crossrefs

Programs

  • Maple
    filter:= proc(t) local L;
      L:= convert(t,base,10);
      convert(L,`*`) = 10*convert(L,`+`)
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Sep 11 2022
  • Mathematica
    Select[Range[10000], Times @@ IntegerDigits[ # ] == 10 Plus @@ IntegerDigits[ # ] &] (* Tanya Khovanova, Dec 25 2006 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==10*vecsum(d) \\ Mohammed Yaseen, Sep 11 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 10*sum(d)
    print([k for k in range(1, 9999) if ok(k)]) # Michael S. Branicky, Sep 11 2022

Extensions

More terms from Harvey P. Dale and Larry Reeves (larryr(AT)acm.org), Jul 06 2001

A062382 Positive numbers whose product of digits is 5 times their sum.

Original entry on oeis.org

257, 275, 345, 354, 435, 453, 527, 534, 543, 572, 725, 752, 1258, 1285, 1528, 1582, 1825, 1852, 2158, 2185, 2235, 2253, 2325, 2352, 2518, 2523, 2532, 2581, 2815, 2851, 3225, 3252, 3522, 5128, 5182, 5218, 5223, 5232, 5281, 5322, 5812, 5821, 8125, 8152
Offset: 1

Views

Author

Amarnath Murthy, Jun 27 2001

Keywords

Examples

			2235 belongs to the sequence as (2*2*3*5)/(2+2+3+5) = 60/12 = 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[9000],Times@@IntegerDigits[#]==5*Total[IntegerDigits[#]]&] (* Harvey P. Dale, Mar 01 2012 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==5*vecsum(d) \\ Mohammed Yaseen, Aug 02 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 5*sum(d)
    print([k for k in range(1, 9000) if ok(k)]) # Michael S. Branicky, Aug 02 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
Offset corrected by Mohammed Yaseen, Aug 02 2022

A061672 Smallest positive number formed by a set of digits whose product = sum of the digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 123, 1124, 11125, 11133, 11222, 111126, 1111127, 1111134, 11111128, 11111223, 111111129, 111111135, 1111111144, 11111111136, 11111111224, 111111112222, 1111111111137, 1111111111145, 1111111111233
Offset: 1

Views

Author

Amarnath Murthy, Jun 26 2001

Keywords

Comments

From M. F. Hasler, Oct 29 2014: (Start)
This is the subsequence of terms of A034710 with digits in nondecreasing order, which is meant by "smallest": For example, 132 also has sum of digits = product of digits, but is already "represented" by 123. The word "set" in the definition actually means "multiset".
The sequence is infinite: for any number N whose digits form a nondecreasing sequence whose sum of digits S is not larger than the product of digits P (i.e., N in A062998), a term of the sequence is obtained by prefixing N with P-S digits '1'. (End)

Examples

			1124 is a term since 1 + 1 + 2 + 4 = 1*1*2*4 = 8.
		

Crossrefs

Programs

  • PARI
    is_A061672(n)={vecsort(n=digits(n))==n && normlp(n,1)==prod(i=1,#n,n[i])} \\ M. F. Hasler, Oct 29 2014

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 27 2001
Corrected by Franklin T. Adams-Watters, Oct 25 2006
Further corrections from T. D. Noe, Oct 12 2007

A062034 Positive numbers whose product of digits is twice the sum of the digits.

Original entry on oeis.org

36, 44, 63, 138, 145, 154, 183, 224, 242, 318, 381, 415, 422, 451, 514, 541, 813, 831, 1146, 1164, 1225, 1233, 1252, 1323, 1332, 1416, 1461, 1522, 1614, 1641, 2125, 2133, 2152, 2215, 2222, 2251, 2313, 2331, 2512, 2521, 3123, 3132, 3213, 3231, 3312, 3321
Offset: 1

Views

Author

Amarnath Murthy, Jun 27 2001

Keywords

Examples

			1225 belongs to the sequence as (1*2*2*5)/(1+2+2+5) =20/10 = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[4000],Times@@IntegerDigits[#]==2Total[IntegerDigits[#]]&] (* Harvey P. Dale, Dec 11 2016 *)
  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==2*vecsum(d) \\ Mohammed Yaseen, Jul 28 2022
    
  • Python
    from math import prod
    def ok(n): d = list(map(int, str(n))); return prod(d) == 2*sum(d)
    print([k for k in range(1, 4000) if ok(k)]) # Michael S. Branicky, Jul 28 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
Offset corrected by Mohammed Yaseen, Jul 28 2022

A062040 Positive numbers whose product of digits is 8 times their sum.

Original entry on oeis.org

448, 456, 465, 484, 546, 564, 645, 654, 844, 1368, 1386, 1449, 1494, 1638, 1683, 1836, 1863, 1944, 2248, 2256, 2265, 2284, 2428, 2482, 2526, 2562, 2625, 2652, 2824, 2842, 3168, 3186, 3618, 3681, 3816, 3861, 4149, 4194, 4228, 4282, 4419, 4491, 4822
Offset: 1

Views

Author

Amarnath Murthy, Jun 28 2001

Keywords

Examples

			2248 belongs to the sequence as (2*2*4*8)/(2+2+4+8) = 128/16 = 8.
		

Crossrefs

Programs

  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==8*vecsum(d) \\ Mohammed Yaseen, Sep 11 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
Offset corrected by Mohammed Yaseen, Sep 11 2022

A062041 Positive numbers whose product of digits is 9 times their sum.

Original entry on oeis.org

369, 396, 466, 639, 646, 664, 693, 936, 963, 2266, 2338, 2383, 2626, 2662, 2833, 3238, 3283, 3328, 3382, 3823, 3832, 6226, 6262, 6622, 8233, 8323, 8332, 11379, 11397, 11459, 11495, 11549, 11594, 11739, 11793, 11937, 11945, 11954, 11973
Offset: 1

Views

Author

Amarnath Murthy, Jun 28 2001

Keywords

Examples

			12339 belongs to the sequence as (1*2*3*3*9)/(1+2+3+3+9) = 162/18 = 9.
		

Crossrefs

Programs

  • PARI
    isok(n) = my(d=digits(n)); vecprod(d)==9*vecsum(d) \\ Mohammed Yaseen, Sep 11 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001
Offset corrected by Mohammed Yaseen, Sep 11 2022
Showing 1-10 of 43 results. Next