cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034731 Dirichlet convolution of b_n=1 with Catalan numbers.

Original entry on oeis.org

1, 2, 3, 7, 15, 46, 133, 436, 1433, 4878, 16797, 58837, 208013, 743034, 2674457, 9695281, 35357671, 129646266, 477638701, 1767268073, 6564120555, 24466283818, 91482563641, 343059672916, 1289904147339, 4861946609466
Offset: 1

Views

Author

Keywords

Comments

Also number of objects fixed by permutations A057509/A057510 (induced by shallow rotation of general parenthesizations/plane trees).

Crossrefs

Occurs for first time in A073202 as row 16.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, CatalanNumber[#-1]&]; Array[a, 26] (* Jean-François Alcover, Dec 05 2015 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(2*(d-1),d-1)/d) \\ Michel Marcus, Jun 07 2013
    
  • PARI
    {a(n) = my(A = sum(m=1, n, (1 - sqrt(1 - 4*x^m +x*O(x^n)))/2 )); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 12 2021
    
  • PARI
    {a(n) = my(A = sum(m=1, n, binomial(2*m-2,m-1)/m * x^m/(1 - x^m +x*O(x^n)) )); polcoeff(A, n)}
    for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 12 2021

Formula

a(n) = Sum_{d divides n} C(d-1) where C() are the Catalan numbers (A000108).
a(n) ~ 4^(n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 05 2015
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(binomial(2*k-2,k-1)/k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
G.f.: Sum_{n>=1} (1 - sqrt(1 - 4*x^n))/2. - Paul D. Hanna, Jan 12 2021
G.f.: Sum_{n>=1} A000108(n-1) * x^n/(1 - x^n) where A000108(n) = binomial(2*n,n)/(n+1). - Paul D. Hanna, Jan 12 2021

Extensions

More comments from Antti Karttunen, Jan 03 2003