cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034738 Dirichlet convolution of b_n = 2^(n-1) with phi(n).

Original entry on oeis.org

1, 3, 6, 12, 20, 42, 70, 144, 270, 540, 1034, 2112, 4108, 8274, 16440, 32928, 65552, 131418, 262162, 524880, 1048740, 2098206, 4194326, 8391024, 16777300, 33558564, 67109418, 134226120, 268435484, 536888520, 1073741854, 2147516736
Offset: 1

Views

Author

Keywords

Comments

Sum of GCD's of parts in all compositions of n. - Vladeta Jovovic, Aug 13 2003
From Petros Hadjicostas, Dec 07 2017: (Start)
It also equals the sum of all lengths of all cyclic compositions of n. This was proved in Perez (2008).
The bivariate g.f. for the number b(n,k) of all cyclic of compositions of n with k parts is Sum_{n,k>=1} b(n,k)*x^n*y^k = -Sum_{s>=1} (phi(s)/s)*log(1 - y^s*Sum_{t>=1} x^{s*t}) = -Sum_{s>=1} (phi(s)/s)*log(1 - y^s*x^s/(1-x^s)). See, for example, Hadjicostas (2016). Differentiating w.r.t. y and setting y = 1, we get Sum_{n>=1} a(n)*x^n = Sum_{n>=1} (Sum_{k=1..n} b(n,k)*k)*x^n = Sum_{s>=1} phi(s)*x^s/(1-2*x^s).
(End)

Examples

			For the compositions of n=4 we have a(4) = gcd(4) + gcd(1,3) + gcd(3,1) + gcd(2,2) + gcd(2,1,1) + gcd(1,2,1) + gcd(1,1,2) + gcd(1,1,1,1) = 4 + 1 + 1 + 2 + 1 + 1 + 1 + 1 = 12. Also, for cyclic compositions of n=4, we have length(4) + length(1,3) + length(2,2) + length(1,1,2) + length(1,1,1,1) = 1 + 2 + 2 + 3 + 4 = 12.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d]*2^(n/d-1), {d, Divisors[n]}], {n, 1, 40}] (* Vaclav Kotesovec, Feb 07 2019 *)
  • PARI
    a(n) = sum(k=1, n, 2^(gcd(k, n)-1)); \\ Seiichi Manyama, Apr 17 2021
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*2^(d-1)); \\ Seiichi Manyama, Apr 17 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-2*x^k))) \\ Seiichi Manyama, Apr 17 2021

Formula

a(n) = A053635(n)/2.
a(n) = (1/2)* Sum_{d|n} phi(d)*2^(n/d), n >= 1.
G.f.: Sum_{s>=1} phi(s)*x^s/(1-2*x^s). - Petros Hadjicostas, Dec 07 2017
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Feb 07 2019
a(n) = Sum_{k=1..n} 2^(gcd(k, n) - 1). - Seiichi Manyama, Apr 17 2021
a(n) = Sum_{k=1..n} 2^(n/gcd(n,k) - 1)*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 06 2021