cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034748 Dirichlet convolution of Fibonacci numbers with phi(n).

Original entry on oeis.org

1, 2, 4, 6, 9, 14, 19, 30, 44, 68, 99, 168, 245, 402, 636, 1026, 1613, 2650, 4199, 6854, 10996, 17820, 28679, 46596, 75065, 121650, 196516, 318250, 514257, 832826, 1346299, 2179374, 3524796, 5704516, 9227571, 14933352, 24157853, 39092386
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [&+[Fibonacci(d)*EulerPhi(n div d): d in Divisors(n)]: n in [1..50]]; // Vincenzo Librandi, Aug 19 2018
  • Mathematica
    Table[Sum[Fibonacci[d] EulerPhi[n/d], {d, Divisors[n]}], {n, 1, 50}] (* Vincenzo Librandi, Aug 19 2018 *)
  • PARI
    a(n)=sumdiv(n,d,fibonacci(d)*eulerphi(n/d))
    

Formula

From definition a(n) = Sum_{d|n} F(d)*phi(n/d); also a(n) = Sum_{k=1..n} gcd(F(k), F(k+n)) where F(k) denotes the k-th Fibonacci number. - Benoit Cloitre, May 25 2003
G.f.: Sum_{k>=1} phi(k) * x^k/(1 - x^k - x^(2*k)). - Ilya Gutkovskiy, Jul 23 2019
a(n) ~ phi^n / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 23 2019
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} F(gcd(n,k)).
a(n) = Sum_{k=1..n} F(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)