cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034838 Numbers k that are divisible by every digit of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 111, 112, 115, 122, 124, 126, 128, 132, 135, 144, 155, 162, 168, 175, 184, 212, 216, 222, 224, 244, 248, 264, 288, 312, 315, 324, 333, 336, 366, 384, 396, 412, 424, 432, 444, 448
Offset: 1

Views

Author

Keywords

Comments

Subset of zeroless numbers A052382: Integers with at least one digit 0 (A011540) are excluded.
A128635(a(n)) = n.
Contains in particular all repdigits A010785 \ {0}. - M. F. Hasler, Jan 05 2020
The greatest term such that the digits are all different is the greatest Lynch-Bell number 9867312 = A115569(548) = A113028(10) [see Diophante link]. - Bernard Schott, Mar 18 2021
Named "nude numbers" by Katagiri (1982-83). - Amiram Eldar, Jun 26 2021

Examples

			36 is in the sequence because it is divisible by both 3 and 6.
48 is included because both 4 and 8 divide 48.
64 is not included because even though 4 divides 64, 6 does not.
		

References

  • Charles Ashbacher, Journal of Recreational Mathematics, Vol. 33 (2005), pp. 227. See problem number 2693.
  • Yoshinao Katagiri, Letter to the editor of the Journal of Recreational Mathematics, Vol. 15, No. 4 (1982-83).
  • Margaret J. Kenney and Stanley J. Bezuszka, Number Treasury 3: Investigations, Facts And Conjectures About More Than 100 Number Families, World Scientific, 2015, p. 175.
  • Thomas Koshy, Elementary Number Theory with Applications, Elsevier, 2007, p. 79.

Crossrefs

Intersection of A002796 (numbers divisible by each nonzero digit) and A052382 (zeroless numbers), or A002796 \ A011540 (numbers with digit 0).
Subsequence of A034709 (divisible by last digit).
Contains A007602 (multiples of the product of their digits) and subset A059405 (n is the product of its digits raised to positive powers), A225299 (divisible by square of each digit), and A066484 (n and its rotations are divisible by each digit).
Cf. A113028, A346267 (number of terms with n digits), A087140 (complement).
Supersequence of A115569 (with all different digits).

Programs

  • Haskell
    a034838 n = a034838_list !! (n-1)
    a034838_list = filter f a052382_list where
       f u = g u where
         g v = v == 0 || mod u d == 0 && g v' where (v',d) = divMod v 10
    -- Reinhard Zumkeller, Jun 15 2012, Dec 21 2011
    
  • Magma
    [n:n in [1..500]| not 0 in Intseq(n) and #[c:c in [1..#Intseq(n)]| n mod Intseq(n)[c] eq 0] eq #Intseq(n)] // Marius A. Burtea, Sep 12 2019
  • Maple
    a:=proc(n) local nn,j,b,bb: nn:=convert(n,base,10): for j from 1 to nops(nn) do b[j]:=n/nn[j] od: bb:=[seq(b[j],j=1..nops(nn))]: if map(floor,bb)=bb then n else fi end: 1,2,3,4,5,6,7,8,9,seq(seq(seq(a(100*m+10*n+k),k=1..9),n=1..9),m=0..6); # Emeric Deutsch
  • Mathematica
    divByEvryDigitQ[n_] := Block[{id = Union[IntegerDigits[n]]}, Union[ IntegerQ[ #] & /@ (n/id)] == {True}]; Select[ Range[ 487],  divByEvryDigitQ[#] &] (* Robert G. Wilson v, Jun 21 2005 *)
    Select[Range[500],FreeQ[IntegerDigits[#],0]&&AllTrue[#/ IntegerDigits[ #], IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 31 2019 *)
  • PARI
    is(n)=my(v=vecsort(eval(Vec(Str(n))),,8)); if(v[1]==0, return(0)); for(i=1, #v, if(n%v[i], return(0))); 1 \\ Charles R Greathouse IV, Apr 17 2012
    
  • PARI
    is_A034838(n)=my(d=Set(digits(n)));d[1]&&!forstep(i=#d,1,-1,n%d[i]&&return) \\ M. F. Hasler, Jan 10 2016
    
  • Python
    A034838_list = []
    for g in range(1,4):
        for n in product('123456789',repeat=g):
            s = ''.join(n)
            m = int(s)
            if not any(m % int(d) for d in s):
                A034838_list.append(m) # Chai Wah Wu, Sep 18 2014
    
  • Python
    for n in range(10**3):
        s = str(n)
        if '0' not in s:
            c = 0
            for i in s:
                if n%int(i):
                    c += 1
                    break
            if not c:
                print(n,end=', ') # Derek Orr, Sep 19 2014
    
  • Python
    # finite automaton accepting sequence (see comments in A346267)
    from math import gcd
    def lcm(a, b): return a * b // gcd(a, b)
    def inF(q): return q[0]%q[1] == 0
    def delta(q, c): return ((10*q[0]+c)%2520, lcm(q[1], c))
    def ok(n):
        q = (0, 1)
        for c in map(int, str(n)):
            if c == 0: return False # computation dies
            else: q = delta(q, c)
        return inF(q)
    print(list(filter(ok, range(450)))) # Michael S. Branicky, Jul 18 2021