cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A007602 Numbers that are divisible by the product of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 36, 111, 112, 115, 128, 132, 135, 144, 175, 212, 216, 224, 312, 315, 384, 432, 612, 624, 672, 735, 816, 1111, 1112, 1113, 1115, 1116, 1131, 1176, 1184, 1197, 1212, 1296, 1311, 1332, 1344, 1416, 1575, 1715, 2112, 2144
Offset: 1

Views

Author

Keywords

Comments

These are called Zuckerman numbers to base 10. [So-named by J. J. Tattersall, after Herbert S. Zuckerman. - Charles R Greathouse IV, Jun 06 2017] - Howard Berman (howard_berman(AT)hotmail.com), Nov 09 2008
This sequence is a subsequence of A180484; the first member of A180484 that is not a member of A007602 is 1114. - D. S. McNeil, Sep 09 2010
Complement of A188643; A188642(a(n)) = 1; A038186 is a subsequence; A168046(a(n)) = 1: subsequence of A052382. - Reinhard Zumkeller, Apr 07 2011
The terms of n digits in the sequence, for n from 1 to 14, are 9, 5, 20, 40, 117, 285, 747, 1951, 5229, 13493, 35009, 91792, 239791, 628412, 1643144, 4314987. Empirically, the counts seem to grow as 0.858*2.62326^n. - Giovanni Resta, Jun 25 2017
De Koninck and Luca showed that the number of Zuckerman numbers below x is at least x^0.122 but at most x^0.863. - Tomohiro Yamada, Nov 17 2017
The quotients obtained when Zuckerman numbers are divided by the product of their digits are in A288069. - Bernard Schott, Mar 28 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters (2005), 2nd Edition, p. 86 (see problems 44-45).

Crossrefs

Cf. A286590 (for factorial-base analog).
Subsequence of A002796, A034838, and A055471.

Programs

  • Haskell
    import Data.List (elemIndices)
    a007602 n = a007602_list !! (n-1)
    a007602_list = map succ $ elemIndices 1 $ map a188642 [1..]
    -- Reinhard Zumkeller, Apr 07 2011
    
  • Magma
    [ n: n in [1..2144] | not IsZero(&*Intseq(n)) and IsZero(n mod &*Intseq(n)) ];  // Bruno Berselli, May 28 2011
    
  • Maple
    filter:= proc(n)
    local p;
    p:= convert(convert(n,base,10),`*`);
    p <> 0 and n mod p = 0
    end proc;
    select(filter, [$1..10000]); # Robert Israel, Aug 24 2014
  • Mathematica
    zuckerQ[n_] := Module[{d = IntegerDigits[n], prod}, prod = Times @@ d; prod > 0 && Mod[n, prod] == 0]; Select[Range[5000], zuckerQ] (* Alonso del Arte, Aug 04 2004 *)
  • PARI
    for(n=1,10^5,d=digits(n);p=prod(i=1,#d,d[i]);if(p&&n%p==0,print1(n,", "))) \\ Derek Orr, Aug 25 2014
  • Python
    from operator import mul
    from functools import reduce
    A007602 = [n for n in range(1,10**5) if not (str(n).count('0') or n % reduce(mul, (int(d) for d in str(n))))] # Chai Wah Wu, Aug 25 2014
    

A034709 Numbers divisible by their last digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 22, 24, 25, 31, 32, 33, 35, 36, 41, 42, 44, 45, 48, 51, 52, 55, 61, 62, 63, 64, 65, 66, 71, 72, 75, 77, 81, 82, 84, 85, 88, 91, 92, 93, 95, 96, 99, 101, 102, 104, 105, 111, 112, 115, 121, 122, 123, 124, 125, 126, 128, 131, 132
Offset: 1

Views

Author

Keywords

Comments

The differences between consecutive terms repeat with period 1177 and the corresponding terms differ by 2520 = LCM(1,2,...,9). In other words, a(k*1177+i) = 2520*k + a(i). - Giovanni Resta, Aug 20 2015
The asymptotic density of this sequence is 1177/2520 = 0.467063... (see A341431 and A341432 for the values in other base representations). - Amiram Eldar, Nov 24 2022

Crossrefs

Programs

  • Haskell
    import Data.Char (digitToInt)
    a034709 n = a034709_list !! (n-1)
    a034709_list =
       filter (\i -> i `mod` 10 > 0 && i `mod` (i `mod` 10) == 0) [1..]
    -- Reinhard Zumkeller, Jun 19 2011
    
  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(ilcm(10,d)*x+d, x=0..floor((N-d)/ilcm(10,d))), d=1..9)]); # Robert Israel, Aug 20 2015
  • Mathematica
    dldQ[n_]:=Module[{idn=IntegerDigits[n],last1},last1=Last[idn]; last1!= 0&&Divisible[n,last1]]; Select[Range[150],dldQ]  (* Harvey P. Dale, Apr 25 2011 *)
    Select[Range[150],Mod[#,10]!=0&&Divisible[#,Mod[#,10]]&] (* Harvey P. Dale, Aug 07 2022 *)
  • PARI
    for(n=1,200,if(n%10,if(!(n%digits(n)[#Str(n)]),print1(n,", ")))) \\ Derek Orr, Sep 19 2014
  • Python
    A034709_list = [n for n in range(1, 1000) if n % 10 and not n % (n % 10)]
    # Chai Wah Wu, Sep 18 2014
    

A002796 Numbers that are divisible by each nonzero digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 22, 24, 30, 33, 36, 40, 44, 48, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 101, 102, 104, 105, 110, 111, 112, 115, 120, 122, 124, 126, 128, 132, 135, 140, 144, 150, 155, 162, 168, 175, 184, 200, 202, 204, 208, 210, 212
Offset: 1

Views

Author

Keywords

Comments

If n is a member so is 10*n. Also all repunits are members. - Robert G. Wilson v, Apr 12 2015
The repdigits are also members because they're always the repunit number of the same length multiplied by the digit being repeated. - Eric Fox, Sep 02 2019
The number of terms < 10^k: 9, 32, 137, 751, 4577, 29950, 207197, 1495637, ... . - Robert G. Wilson v, Apr 13 2015
Includes all multiples of 2520. - Robert Israel, Apr 15 2015
For n >= 10: A067458(a(n)) = 0. - Reinhard Zumkeller, Sep 24 2015

References

  • Lindon, Visible factor numbers, J. Rec. Math., 1 (1968), 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A171492 (complement).
Cf. A067458.

Programs

  • Haskell
    import Data.List (nub, sort); import Data.Char (digitToInt)
    a002796 n = a002796_list !! (n-1)
    a002796_list = filter f [1..] where
       f x = all ((== 0) . mod x) ds where
         ds = map digitToInt (if c == '0' then cs else cs')
         cs'@(c:cs) = nub $ sort $ show x
    -- Reinhard Zumkeller, Jan 01 2014
    
  • Magma
    sol:=[];for k in [1..220] do a:=Set(Intseq(k)) diff {0}; if #[c:c in a|IsIntegral(k/c)] eq #a then; Append(~sol,k); end if; end for; sol; // Marius A. Burtea, Sep 09 2019
    
  • Maple
    select(t -> t mod ilcm(op(convert(convert(t,base,10),set) minus {0})) = 0, [$1..1000]); # Robert Israel, Apr 15 2015
  • Mathematica
    dQ[n_]:=Module[{nzidn=DeleteCases[IntegerDigits[n],0]},And@@Divisible[n, nzidn]]; Select[Range[250],dQ] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    is(n)=my(v=vecsort(eval(Vec(Str(n))),,8));for(i=1+(v[1]==0), #v, if(n%v[i],return(0)));1 \\ Charles R Greathouse IV, Apr 17 2012
    
  • Python
    A002796_list = []
    for i in range(1,10**5):
        for d in set(str(i)):
            if d != '0' and i % int(d):
                break
        else:
            A002796_list.append(i) # Chai Wah Wu, Mar 26 2021

Formula

a(n) ~ 2520*n. - Charles R Greathouse IV, Feb 13 2017

Extensions

More terms from Henry Bottomley, Jun 06 2000

A115569 Lynch-Bell numbers: numbers n such that the digits are all different (and do not include 0) and n is divisible by each of its individual digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 24, 36, 48, 124, 126, 128, 132, 135, 162, 168, 175, 184, 216, 248, 264, 312, 315, 324, 384, 396, 412, 432, 612, 624, 648, 672, 728, 735, 784, 816, 824, 864, 936, 1236, 1248, 1296, 1326, 1362, 1368, 1395, 1632, 1692, 1764, 1824
Offset: 1

Views

Author

Mike Smith (mtm_king(AT)yahoo.com), Mar 10 2006; also submitted by Andy Edwards (AndynGen(AT)aol.com), Mar 20 2006

Keywords

Comments

This is a subset of some of the related sequences listed below. Stephen Lynch and Andrew Bell are Brisbane surgeons who contributed to the identification of this sequence.
There are 548 Lynch-Bell numbers. A117911 gives the number of n-digit ones. The digit 5 cannot appear in Lynch-Bell numbers containing an even digit; 5 must be the units digit when it appears. The 7-digit Lynch-Bell numbers are 105 permutations of 1289736 (the smallest such). - Rick L. Shepherd, Apr 01 2006
Can be seen/read as a table with row lengths A117911 (rows r > 7 have zero length). - M. F. Hasler, Jan 31 2016

Examples

			384/3 = 128, 384/8 = 48, 384/4 = 96. Thus 384 is Lynch-Bell as it is a multiple of each of its three distinct digits.
		

Crossrefs

Cf. A117911, A117912 (have even digits only), A117913 (have odd digits only), A010784.

Programs

  • Maple
    with(combinat):
    f:= l-> parse(cat(l[])):
    T:= n-> sort(map(f, select(l-> andmap(x-> irem(f(l), x)=0, l),
             map(p-> permute(p)[], choose([$1..9], n)))))[]:
    seq(T(n), n=1..7);  # Alois P. Heinz, Jul 31 2022
  • Mathematica
    Reap[For[n = 1, n < 10^7, n++, id = IntegerDigits[n]; If[FreeQ[id, 0] && Length[id] == Length[Union[id]] && And @@ (Divisible[n, #]& /@ id), Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 26 2013 *)
    bnQ[n_]:=Max[DigitCount[n]]==1&&FreeQ[IntegerDigits[n],0]&&Union[Divisible[n,IntegerDigits[ n]]]=={True}; Select[Range[2000],lbnQ] (* Harvey P. Dale, Jun 02 2023 *)
    Cases[Union @@ ((FromDigits@#&/@Flatten[Permutations@# & /@ Subsets[Range@9, {#}], 1])&/@ Range@9), ?(DeleteDuplicates[Divisible[#, IntegerDigits@#]] == {True} &)] (* _Hans Rudolf Widmer, Aug 27 2024 *)
  • PARI
    A115569_row(n)={if(n,my(u=vectorv(n,i,10^i)\10,S=List(),M);forvec(v=vector(n,i,[1,9]),(M=lcm(v))%10==0||normlp(v,1)%3^valuation(M,3)||for(k=1,n!,vecextract(v,numtoperm(n,k))*u%M ||listput(S,vecextract(v,numtoperm(n,k))*u)),2);Set(S),concat(apply(A115569_row,[1..7])))} \\ Return terms of length n if given, else the vector of all terms. The checks M%10 and |v| % 3^v(...) are not needed but reduce CPU time by 97%. - M. F. Hasler, Jan 31 2016
    
  • PARI
    A115569(n)=n>9&&for(r=2,7,(n-=#t=A115569_row(r))>9||return(t[n-9+#t]));n \\ M. F. Hasler, Jan 31 2016
    
  • Python
    def ok(n):
        s = str(n)
        if "0" in s or len(set(s)) < len(s): return False
        return all(n%int(d) == 0 for d in s)
    afull = [k for k in range(9867313) if ok(k)]
    print(afull[:55]) # Michael S. Branicky, Jul 31 2022

Extensions

The full list of terms was sent in by Rick L. Shepherd (see link) and also by Sébastien Dumortier, Apr 04 2006

A132359 Numbers divisible by the square of their last decimal digit.

Original entry on oeis.org

1, 11, 12, 21, 25, 31, 32, 36, 41, 51, 52, 61, 63, 64, 71, 72, 75, 81, 91, 92, 101, 111, 112, 121, 125, 128, 131, 132, 141, 144, 147, 151, 152, 153, 161, 171, 172, 175, 181, 191, 192, 201, 211, 212, 216, 221, 224, 225, 231, 232, 241, 243, 251, 252, 261, 271, 272
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2007

Keywords

Comments

Subsequences are A017281 and A053742 representing last digits 1 and 5. Generators for the subsequences representing last digits 2, 3, 4, 6, 7, 8 and 9 are, in that order, the terms 12+20i, 63+90i, 64+80i, 36+180i, 147+490i, 128+320i, 729+810i, where i=0,1,2,... - R. J. Mathar, Nov 13 2007
This is a 10-automatic sequence. - Charles R Greathouse IV, Dec 28 2011

Examples

			147 belongs to the sequence because 147/7^2 = 3.
		

Crossrefs

Programs

  • Maple
    isA132359 := proc(n) local ldig ; ldig := n mod 10 ; if ldig <> 0 and n mod (ldig^2) = 0 then true ; else false ; fi ; end: for n from 1 to 400 do if isA132359(n) then printf("%d,",n) ; fi ; od: # R. J. Mathar, Nov 13 2007
    a:=proc(n) local nn: nn:=convert(n,base,10): if 0 < nn[1] and `mod`(n,nn[1]^2) =0 then n else end if end proc: seq(a(n),n=1..250); # Emeric Deutsch, Nov 15 2007
  • Mathematica
    Select[Range[250], IntegerDigits[ # ][[ -1]] > 0 && Mod[ #, IntegerDigits[ # ][[ -1]]^2] == 0 &] (* Stefan Steinerberger, Nov 12 2007 *)
    dsldQ[n_]:=Module[{lidnsq=Last[IntegerDigits[n]]^2},lidnsq!=0 && Divisible[n,lidnsq]]; Select[Range[300],dsldQ] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    is(n)=n%(n%10)^2==0 \\ Charles R Greathouse IV, Dec 28 2011
    
  • Python
    def ok(n): return n%10 > 0 and n%(n%10)**2 == 0
    print([k for k in range(273) if ok(k)]) # Michael S. Branicky, Jul 03 2022
  • R
    which(sapply(1:500,function(x) isint(x/(x%%10)^2))) # Christian N. K. Anderson, May 04 2013
    

Formula

Numbers k such that fp[k / (k mod 10)] = 0.
a(n) ~ 6350400*n/1241929 = 5.113...*n. - Charles R Greathouse IV, Dec 28 2011

Extensions

Corrected and extended by Stefan Steinerberger, Emeric Deutsch and R. J. Mathar, Nov 12 2007

A063527 Numbers that are divisible by all of their 1 and 2 digit substrings.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 1111, 1155, 1248, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 27216, 31248, 111111, 116688, 121212, 142128, 212184, 222222, 242424, 313131, 321216, 333333, 363636, 368424, 444444
Offset: 1

Views

Author

Erich Friedman, Aug 01 2001

Keywords

Comments

Subsequence of A034838. - Michel Marcus, Sep 19 2014

Examples

			1155 is divisible by 1, 1, 5, 5, 11, 15 and 55.
		

Crossrefs

Cf. A034838 (integers divisible by all their digits).

Programs

  • Mathematica
    d12Q[n_]:=Module[{idn=IntegerDigits[n],idn2},idn2=FromDigits/@Partition[ idn,2,1];FreeQ[idn,0]&&And@@Divisible[n,idn]&&And@@Divisible[n,idn2]]; Select[Range[400000],d12Q] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    is(n) = {my(d = digits(n), t = 0); s = Set(d); if(s[1] == 0, return(0)); for(i = 1, 2, for(j = 1, #d - i + 1, t++; fr = fromdigits(vector(i, k, d[j+k-1])); if(n % fr != 0, return(0)); ) ); 1 } \\ David A. Corneth, Sep 17 2019
  • Python
    from itertools import product
    A063527_list = []
    for g in range(1,7):
        for n in product('123456789', repeat=g):
            s = ''.join(n)
            m = int(s)
            if not any([m % int(d) for d in s]):
                for i in range(len(s)-1):
                    if m % int(s[i:i+2]):
                        break
                else:
                    A063527_list.append(m) # Chai Wah Wu, Sep 18 2014
    

Extensions

More terms from David A. Corneth, Sep 17 2019

A066484 Numbers with at least 2 distinct digits and whose "rotations" (including the number itself) are multiples of these digits; repeated digits allowed but digit 0 not allowed.

Original entry on oeis.org

1113, 1131, 1311, 2226, 2262, 2622, 3111, 3339, 3393, 3933, 6222, 9333, 11133, 11313, 11331, 13113, 13131, 13311, 22266, 22626, 22662, 26226, 26262, 26622, 31113, 31131, 31311, 33111, 33399, 33939, 33993, 39339, 39393, 39933, 62226, 62262, 62622, 66222, 93339, 93393, 93933, 99333, 111333, 111339, 111393
Offset: 1

Views

Author

Sudipta Das (juitech(AT)vsnl.net), Jan 02 2002

Keywords

Comments

"Rotation" of a (multi-digit) number involves taking the first digit of the number and putting it at the end to form a new number. For example, successive rotations of 1234 yield the numbers 2341, 3412 and 4123 (another rotation gives back the original number).
Subsequence of A034838, A052382 and of A139819. - Reinhard Zumkeller, Nov 29 2012

Examples

			The rotations of 137179 are 371791, 717913, 179137, 791371, 913717, 137179; all these are divisible by 1, 3, 7 and 9.
		

Programs

  • Haskell
    -- import Data.List (nub, inits, tails)
    a066484 n = a066484_list !! (n-1)
    a066484_list = filter h [1..] where
       h x = notElem '0' xs && length (nub xs) > 1 &&
             all d (map read $ zipWith (++)
                   (tail $ tails xs) (tail $ inits xs)) where xs = show x
       d u = g u where
             g v = v == 0 || mod u d == 0 && g v' where (v', d) = divMod v 10
    -- Reinhard Zumkeller, Nov 29 2012
    
  • Mathematica
    ddQ[n_]:=Module[{idn=IntegerDigits[n]},DigitCount[n,10,0]==0 && Length[Union[idn]]>1 && And@@Flatten[Divisible[#,Union[idn]]&/@ (FromDigits/@Table[RotateRight[idn,i], {i,Length[idn]}])]]; Select[Range[10,200000],ddQ]  (* Harvey P. Dale, Mar 30 2011 *)
  • PARI
    select( {is_A066484(n,d=Set(digits(n)))= d[1] && #d>1 && (d[1]>1||d=d[^1]) && !for(i=0,logint(n,10),n=[1,10^logint(n,10)]*divrem(n,10);[n%x|x<-d]&&return)}, [1..10^5]) \\ M. F. Hasler, Jan 05 2020

Extensions

Corrected and extended by Harvey P. Dale, Mar 30 2011
Definition reworded by M. F. Hasler, Jan 05 2020

A051004 Numbers divisible both by their individual digits and by the sum of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 48, 111, 112, 126, 132, 135, 144, 162, 216, 222, 224, 264, 288, 312, 315, 324, 333, 336, 396, 432, 444, 448, 555, 612, 624, 648, 666, 735, 777, 864, 888, 936, 999, 1116, 1122, 1128, 1164, 1212, 1224, 1236, 1296, 1332
Offset: 1

Views

Author

Keywords

Comments

No zero digits permitted. [Harvey P. Dale, Dec 18 2011]

Crossrefs

Intersection of A005349 and A034838.

Programs

  • Haskell
    a051004 n = a051004_list !! (n-1)
    a051004_list =  [x | x <- a005349_list,
                         x == head (dropWhile (< x) a034838_list)]
    -- Reinhard Zumkeller, Mar 03 2012
  • Mathematica
    ddQ[n_]:=Module[{idn=IntegerDigits[n]},!MemberQ[idn,0] && Divisible[ n,Total[idn]]&& And @@ Divisible[n,idn]]; Select[Range[1400],ddQ] (* Harvey P. Dale, Dec 18 2011 *)

Extensions

Offset corrected by Reinhard Zumkeller, Mar 03 2012

A087142 Numbers divisible by their individual digits, but not by the sum of their digits (counted with multiplicity).

Original entry on oeis.org

11, 15, 22, 33, 44, 55, 66, 77, 88, 99, 115, 122, 124, 128, 155, 168, 175, 184, 212, 244, 248, 366, 384, 412, 424, 488, 515, 636, 672, 728, 784, 816, 824, 848, 1111, 1112, 1113, 1115, 1124, 1131, 1144, 1155, 1176, 1184, 1197, 1222, 1244, 1248, 1266, 1288, 1311
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 18 2003

Keywords

Comments

Intersection of A034838 and A065877.

Examples

			488 is in the sequence as its divisible by its individual digits but not by the sum of its digits counted with multiplicity. That is 488 is divisible by 4 and 8 but not by 4 + 8 + 8 = 20. - _David A. Corneth_, Jan 28 2021
		

Crossrefs

Cf. A337163 (similar, with product).

Programs

  • Mathematica
    didQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&AllTrue[n/idn, IntegerQ] && !Divisible[n,Total[idn]]]; Select[Range[1300], didQ] (* The program uses the AllTrue function from Mathematica version 10 *)  (* Harvey P. Dale, Apr 18 2016 *)
  • PARI
    is(n) = { my(d = digits(n), sd = vecsum(d), s = Set(d)); if(n == 0 || s[1] == 0, return(0)); if(n % sd != 0, for(i = 1, #s, if(n % s[i] != 0, return(0) ) ); return(1) ); 0 } \\ David A. Corneth, Jan 28 2021
    
  • Python
    def ok(n):
        d = list(map(int, str(n)))
        return 0 not in d and n%sum(d) and all(n%di == 0 for di in set(d))
    print([k for k in range(1312) if ok(k)]) # Michael S. Branicky, Nov 15 2021

A221651 Numbers divisible by their first digit squared (excluding those whose first digit is 1).

Original entry on oeis.org

20, 24, 28, 36, 48, 50, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 400, 416, 432, 448, 464, 480, 496, 500, 525, 550, 575
Offset: 1

Views

Author

Keywords

Comments

Numbers where floor(n/10^floor(log(n)))^2 divides n.

Examples

			48 is divisible by 4^2.
		

Crossrefs

Programs

  • R
    x=0; y=rep(0,1000); len=0
    firstdig<-function(x) as.numeric(substr(as.character(x),1,1))
    isint<-function(x) x==as.integer(x)
    while(len<10000) if((fd=firstdig((x=x+1)))>1) if(isint(x/fd^2)) y[(len=len+1)]=x
Showing 1-10 of 37 results. Next