cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 77 results. Next

A337941 Numbers whose divisors are all Zuckerman numbers (A007602).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 1111111111111111111, 11111111111111111111111
Offset: 1

Views

Author

Bernard Schott, Oct 01 2020

Keywords

Comments

Inspired by A337741.
Zuckerman numbers are numbers that are divisible by the product of their digits (see link).
The next term is the repunit prime R_317 which is too large to include in the data.
Primes in this sequence are 2, 3, 5, 7 and all the repunit primes (see A004023).
This sequence is infinite if and only if there are infinitely many repunit primes.

Examples

			6 is a term since all the divisors of 6, i.e., 1, 2, 3 and 6, are Zuckerman numbers.
		

Crossrefs

Subsequence of A007602.
Similar sequences: A062687, A190217, A308851, A329419, A337741.
Cf. A004022 (subsequence of prime repunits).

Programs

  • Mathematica
    zuckQ[n_] := (prod = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prod]; Select[Range[24], AllTrue[Divisors[#], zuckQ] &] (* Amiram Eldar, Oct 01 2020 *)
  • PARI
    isok(m) = {fordiv(m, d, my(p=vecprod(digits(d))); if (!p || (d % p), return (0))); return (1);} \\ Michel Marcus, Oct 05 2020

A342951 a(n) is the least term in A007602 that is divisible by A342950(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 112, 15, 112, 36, 315, 24, 175, 135, 112, 128, 175, 36, 672, 135, 144, 735, 216, 112, 315, 128, 144, 1575, 1296, 672, 384, 1176, 315, 216, 112, 1551375, 3276, 128, 135, 144, 735, 1296, 672, 175, 16632, 384, 1176, 216, 224, 1575, 2916
Offset: 1

Views

Author

David A. Corneth, Mar 30 2021

Keywords

Comments

No term in A007602 is divisible by 10 and does not tend to have a lot of 0's. This is about divisibility by 7-smooth numbers that are not divisible by 10.

Examples

			a(11) = 112 as A342950(11) = 14 and the least term in A007602 that is divisible by 14 is 112.
		

Crossrefs

Cf. A007602.

A359961 Smallest Zuckerman number (A007602) with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 6, 132, 3276, 27132, 1117116, 111914712, 6111417312, 1113117121116, 1112712811322112, 11171121131111172
Offset: 0

Views

Author

Bernard Schott, Jan 21 2023

Keywords

Examples

			3276 = 2^2*3^2*7*13 is the smallest integer with 4 distinct prime factors that is also Zuckerman number as 3276 / (3*2*7*6) = 13, so a(4) = 3276.
		

Crossrefs

Similar: A060319 (Fibonacci), A083002 (oblong), A359960 (Niven).

Programs

  • PARI
    a(n) = my(k=1); while (!(p=vecprod(digits(k))) || (k % p) || (omega(k) != n), k++); k; \\ Michel Marcus, Jan 21 2023

Extensions

a(6)-a(7) from Michel Marcus, Jan 21 2023
a(8)-a(9) from Daniel Suteu, Jan 21 2023
a(10)-a(11) from Bert Dobbelaere, Jan 29 2023

A343050 Zuckerman numbers (A007602) ordered by increasing value of k/A007954(k) where A007954(k) is the product of the decimal digits of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 15, 24, 384, 175, 12, 735, 128, 672, 135, 144, 1575, 11, 1296, 139968, 624, 3276, 1886976, 224, 816, 216, 432, 34992, 1197, 12768, 315, 132, 3168, 115, 6624, 8832, 2916, 1176, 1344, 3915, 739935
Offset: 1

Views

Author

Michel Marcus, Apr 03 2021

Keywords

Comments

a(n) is the Zuckerman number corresponding to A343036(n).

Examples

			As a table, sequence begins:
   1 [1, 2, 3, 4, 5, 6, 7, 8, 9]
   2 [36]
   3 [15, 24]
   4 [384]
   5 [175]
   6 [12]
   7 [735]
   8 [128, 672]
   9 [135, 144, 1575]
  10 []
  11 [11]
  12 [1296, 139968]
  13 [624, 3276, 1886976]
  14 [224]
  15 []
  16 []
  17 [816]
  18 [216, 432, 34992]
  19 [1197, 12768]
  20 []
  21 [315]
  22 [132, 3168]
  23 [115, 6624, 8832]
  24 []
  25 []
  26 []
  27 [2916]
  28 [1176, 1344]
  29 [3915, 739935]
  30 []
  ... where the 1st column is A056770 and the number of terms per rows is A339757.
		

Crossrefs

Cf. A007954 (product of decimal digits), A007602 (Zuckerman numbers), A056770.
Cf. A288069 (Zuckerman quotients), A342593 (Zuckerman non-quotients), A343036.
Cf. A339757.

Extensions

a(29)-a(45) from David A. Corneth, Apr 03 2021

A360075 a(n) is the product of the digits of A007602(n), the n-th Zuckerman number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 5, 8, 18, 1, 2, 5, 16, 6, 15, 16, 35, 4, 12, 16, 6, 15, 96, 24, 12, 48, 84, 105, 48, 1, 2, 3, 5, 6, 3, 42, 32, 63, 4, 108, 3, 18, 48, 24, 175, 35, 4, 32, 24, 108, 3, 18, 144, 21, 252, 18, 135, 8, 64, 96, 96, 288, 108, 14, 63
Offset: 1

Views

Author

Rémy Sigrist, Jan 24 2023

Keywords

Comments

Zuckerman numbers (A007602) correspond to numbers divisible by the product of their digits.

Examples

			For n = 1515:
- A007602(1515) = 11834112,
- so a(1515) = 1*1*8*3*4*1*1*2 = 192.
		

Crossrefs

Programs

  • PARI
    { for (n=1, 7119, p=vecprod(digits(n)); if (p && n%p==0, print1 (p", "))) }

Formula

a(n) = A007954(A007602(n)).
a(n) = A051801(A007602(n)).
a(n) * A288069(n) = A007602(n).

A342952 a(n) is the least term in A007602 such that the product of digits equals A342950(n) or 0 if no such number exists.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 216, 7112, 135, 128, 36, 3171, 432, 0, 11111391, 12712, 1184, 175, 11111292, 1176, 111195, 624, 1171111711, 19116, 147112, 1197, 4224, 114192, 0, 113319, 672, 384, 171171112, 735, 1296, 11872, 0, 17136, 21248, 3915, 3168, 3177111, 13932, 21672
Offset: 1

Views

Author

David A. Corneth, Mar 30 2021

Keywords

Examples

			a(10) = 216 as A342950(10) = 12 and 216 is the least number in A007602 that has product of digits 12.
a(17) = 0 as A342950(17) = 25 and the only way the product of digits of a number can be 25 is if the number has two 5's and other digits, if any, are 1. Such a number must end in 5. The tens digit can only be 1 or 5, but no possibility gives a multiple of 25.
		

Crossrefs

A005349 Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200, 201, 204
Offset: 1

Views

Author

Keywords

Comments

Both spellings, "Harshad" or "harshad", are in use. It is a Sanskrit word, and in Sanskrit there is no distinction between upper- and lower-case letters. - N. J. A. Sloane, Jan 04 2022
z-Niven numbers are numbers n which are divisible by (A*s(n) + B) where A, B are integers and s(n) is sum of digits of n. Niven numbers have A = 1, B = 0. - Ctibor O. Zizka, Feb 23 2008
A070635(a(n)) = 0. A038186 is a subsequence. - Reinhard Zumkeller, Mar 10 2008
A049445 is a subsequence of this sequence. - Ctibor O. Zizka, Sep 06 2010
Complement of A065877; A188641(a(n)) = 1; A070635(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2011
A001101, the Moran numbers, are a subsequence. - Reinhard Zumkeller, Jun 16 2011
A140866 gives the number of terms <= 10^k. - Robert G. Wilson v, Oct 16 2012
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1984). - Amiram Eldar, Jul 10 2020
From Amiram Eldar, Oct 02 2023: (Start)
Named "Harshad numbers" by the Indian recreational mathematician Dattatreya Ramchandra Kaprekar (1905-1986) in 1955. The meaning of the word is "giving joy" in Sanskrit.
Named "Niven numbers" by Kennedy et al. (1980) after the Canadian-American mathematician Ivan Morton Niven (1915-1999). During a lecture given at the 5th Annual Miami University Conference on Number Theory in 1977, Niven mentioned a question of finding a number that equals twice the sum of its digits, which appeared in the children's pages of a newspaper. (End)

Examples

			195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5).
		

References

  • Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
  • D. R. Kaprekar, Multidigital Numbers, Scripta Math., Vol. 21 (1955), p. 27.
  • Robert E. Kennedy and Curtis N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.
  • Robert E. Kennedy, Terry A. Goodman, and Clarence H. Best, Mathematical Discovery and Niven Numbers, The MATYC Journal, Vol. 14, No. 1 (1980), pp. 21-25.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171.

Crossrefs

Cf. A001102 (a subsequence).
Cf. A118363 (for factorial-base analog).
Cf. A330927, A154701, A141769, A330928, A330929, A330930 (start of runs of 2, 3, ..., 7 consecutive Niven numbers).

Programs

  • GAP
    Filtered([1..230],n-> n mod List(List([1..n],ListOfDigits),Sum)[n]=0); # Muniru A Asiru
  • Haskell
    a005349 n = a005349_list !! (n-1)
    a005349_list = filter ((== 0) . a070635) [1..]
    -- Reinhard Zumkeller, Aug 17 2011, Apr 07 2011
    
  • Magma
    [n: n in [1..250] | n mod &+Intseq(n) eq 0];  // Bruno Berselli, May 28 2011
    
  • Magma
    [n: n in [1..250] | IsIntegral(n/&+Intseq(n))];  // Bruno Berselli, Feb 09 2016
    
  • Maple
    s:=proc(n) local N:N:=convert(n,base,10):sum(N[j],j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n),n=1..210); # Emeric Deutsch
  • Mathematica
    harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* Alonso del Arte, Aug 04 2004 and modified by Robert G. Wilson v, Oct 16 2012 *)
    Select[Range[300],Divisible[#,Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 07 2015 *)
  • PARI
    is(n)=n%sumdigits(n)==0 \\ Charles R Greathouse IV, Oct 16 2012
    
  • Python
    A005349 = [n for n in range(1,10**6) if not n % sum([int(d) for d in str(n)])] # Chai Wah Wu, Aug 22 2014
    
  • Sage
    [n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # Freddy Barrera, Jul 27 2018
    

A007954 Product of decimal digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Moebius transform of A093811(n). a(n) = A093811(n) * A008683(n), where operation * denotes Dirichlet convolution, namely b(n) * c(n) = Sum_{d|n} b(d) * c(n/d). Simultaneously holds Dirichlet multiplication: a(n) * A000012(n) = A093811(n). - Jaroslav Krizek, Mar 22 2009
Apart from the 0's, all terms are in A002473. Further, for all m in A002473 there is some n such that a(n) = m, see A096867. - Charles R Greathouse IV, Sep 29 2013
a(n) = 0 asymptotically almost surely, namely for all n except for the set of numbers without digit '0'; this set is of density zero, since it is less and less probable to have no '0' as the number of digits of n grows. (See also A054054.) - M. F. Hasler, Oct 11 2015

Crossrefs

Cf. A031347 (different from A035930), A007953, A007602, A010888, A093811, A008683, A000012, A061076 (partial sums), A230099.
Cf. A051802 (ignoring zeros).

Programs

  • Haskell
    a007954 n | n < 10 = n
              | otherwise = m * a007954 n' where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Oct 26 2012, Mar 14 2011
    
  • Magma
    [0] cat [&*Intseq(n): n in [1..110]]; // Vincenzo Librandi, Jan 03 2020
    
  • Maple
    A007954 := proc(n::integer)
        if n = 0 then
            0;
        else
            mul( d,d=convert(n,base,10)) ;
        end if;
    end proc: # R. J. Mathar, Oct 02 2019
  • Mathematica
    Array[Times @@ IntegerDigits@ # &, 108, 0] (* Robert G. Wilson v, Mar 15 2011 *)
  • PARI
    A007954(n)= { local(resul = n % 10); n \= 10; while( n > 0, resul *= n %10; n \= 10; ); return(resul); } \\ R. J. Mathar, May 23 2006, edited by M. F. Hasler, Apr 23 2015
    
  • PARI
    A007954(n)=prod(i=1,#n=Vecsmall(Str(n)),n[i]-48) \\ (...eval(Vec(...)),n[i]) is about 50% slower; (...digits(n)...) about 6% slower. \\ M. F. Hasler, Dec 06 2009
    
  • PARI
    a(n)=if(n,factorback(digits(n)),0) \\ Charles R Greathouse IV, Apr 14 2020
    
  • Python
    from math import prod
    def a(n): return prod(map(int, str(n)))
    print([a(n) for n in range(108)]) # Michael S. Branicky, Jan 16 2022
  • Scala
    (0 to 99).map(.toString.toCharArray.map( - 48).scanRight(1)( * ).head) // Alonso del Arte, Apr 14 2020
    

Formula

A000035(a(A014261(n))) = 1. - Reinhard Zumkeller, Nov 30 2007
a(n) = abs(A187844(n)). - Reinhard Zumkeller, Mar 14 2011
a(n) > 0 if and only if A054054(n) > 0. a(n) = d in {1, ..., 9} if n = (10^k - 1)/9 + (d - 1)*10^m = A002275(k) + (d - 1)*A011557(m) for some k > m >= 0. The statement holds with "if and only if" for d in {1, 2, 3, 5, 7}. For d = 4, 6, 8 or 9, one has a(n) = d if n = (10^k - 1)/9 + (a - 1)*10^m + (b - 1)*10^p with integers k > m > p >= 0 and a, b > 0 such that d = a*b. - M. F. Hasler, Oct 11 2015
From Robert Israel, May 17 2016: (Start)
G.f.: Sum_{n >= 0} Product_{j = 0..n} Sum_{k = 1..9} k*x^(k*10^j).
G.f. satisfies A(x) = (x + 2*x^2 + ... + 9*x^9)*(1 + A(x^10)). (End)
a(n) <= 9^(1 + log_10(n/9)). - Lucas A. Brown, Jun 22 2023

Extensions

Error in term 25 corrected, Nov 15 1995

A052382 Numbers without 0 in the decimal expansion, colloquial 'zeroless numbers'.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

The entries 1 to 79 match the corresponding subsequence of A043095, but then 81, 91-98, 100, 102, etc. are only in one of the two sequences. - R. J. Mathar, Oct 13 2008
Complement of A011540; A168046(a(n)) = 1; A054054(a(n)) > 0; A007602, A038186, A038618, A052041, A052043, and A052045 are subsequences. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011, Dec 01 2009
a(n) = n written in base 9 where zeros are not allowed but nines are. The nine distinct digits used are 1, 2, 3, ..., 9 instead of 0, 1, 2, ..., 8. To obtain this sequence from the "canonical" base 9 sequence with zeros allowed, just replace any 0 with a 9 and then subtract one from the group of digits situated on the left. For example, 9^3 = 729 (10) (in base 10) = 1000 (9) (in base 9) = 889 (9-{0}) (in base 9 without zeros) because 100 (9) = [9-1]9 = 89 (9-{0}) and thus 1000 (9) = [89-1]9 = 889 (9-{0}). - Robin Garcia, Jan 15 2014
From Hieronymus Fischer, May 28 2014: (Start)
Inversion: Given a term m, the index n such that a(n) = m can be calculated by A052382_inverse(m) = m - sum_{1<=j<=k} floor(m/10^j)*9^(j-1), where k := floor(log_10(m)) [see Prog section for an implementation in Smalltalk].
Example 1: A052382_inverse(137) = 137 - (floor(137/10) + floor(137/100)*9) = 137 - (13*1 + 1*9) = 137 - 22 = 115.
Example 2: A052382_inverse(4321) = 4321 - (floor(4321/10) + floor(4321/100)*9 + floor(4321/1000)*81) = 4321 - (432*1 + 43*9 + 4*81) = 4321 - (432 + 387 + 324) = 3178. (End)
The sum of the reciprocals of these numbers from a(1)=1 to infinity, called the Kempner series, is convergent towards a limit: 23.103447... whose decimal expansion is in A082839. - Bernard Schott, Feb 23 2019
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020

Examples

			For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012 and Jun 06 2012; edited by _M. F. Hasler_, Jan 13 2020
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

Cf. A004719, A052040, different from A067251.
Column k=9 of A214676.
Cf. A011540 (complement), A043489, A054054, A168046.
Cf. A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9).
Cf. A082839 (sum of reciprocals).
Cf. A038618 (subset of primes)

Programs

  • Haskell
    a052382 n = a052382_list !! (n-1)
    a052382_list = iterate f 1 where
    f x = 1 + if r < 9 then x else 10 * f x' where (x', r) = divMod x 10
    -- Reinhard Zumkeller, Mar 08 2015, Apr 07 2011
    
  • Magma
    [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local d, l, m; m:= n; l:= NULL;
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 11 2015
    is_zeroless := n -> not is(0 in convert(n, base, 10)):
    select(is_zeroless, [seq(1..113)]);  # Peter Luschny, Jun 20 2025
  • Mathematica
    A052382 = Select[Range[100], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 10 2011 *)
  • PARI
    select( {is_A052382(n)=n&&vecmin(digits(n))}, [0..111]) \\ actually: is_A052382 = (bool) A054054. - M. F. Hasler, Jan 23 2013, edited Jan 13 2020
    
  • PARI
    a(n) = for (w=0, oo, if (n >= 9^w, n -= 9^w, return ((10^w-1)/9 + fromdigits(digits(n, 9))))) \\ Rémy Sigrist, Jul 26 2017
    
  • PARI
    apply( {A052382(n,L=logint(n,9))=fromdigits(digits(n-9^L>>3,9))+10^L\9}, [1..100])
    next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n. Used in A038618.
    ( {A052382_vec(n,M=1)=M--;vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
    \\ See OEIS Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
    
  • Python
    A052382 = [n for n in range(1,10**5) if not str(n).count('0')]
    # Chai Wah Wu, Aug 26 2014
    
  • Python
    from sympy import integer_log
    def A052382(n):
        m = integer_log(k:=(n<<3)+1,9)[0]
        return sum((1+(k-9**m)//(9**j<<3)%9)*10**j for j in range(m)) # Chai Wah Wu, Jun 27 2025
  • Smalltalk
    A052382
    "Answers the n-th term of A052382, where n is the receiver."
    ^self zerofree: 10
    A052382_inverse
    "Answers that index n which satisfy A052382(n) = m, where m is the receiver.”
    ^self zerofree_inverse: 10
    zerofree: base
    "Answers the n-th zerofree number in base base, where n is the receiver. Valid for base > 2.
    Usage: n zerofree: b [b = 10 for this sequence]
    Answer: a(n)"
    | n m s c bi ci d |
    n := self.
    c := base - 1.
    m := (base - 2) * n + 1 integerFloorLog: c.
    d := n - (((c raisedToInteger: m) - 1)//(base - 2)).
    bi := 1.
    ci := 1.
    s := 0.
    1 to: m
    do:
    [:i |
    s := (d // ci \\ c + 1) * bi + s.
    bi := base * bi.
    ci := c * ci].
    ^s
    zerofree_inverse: base
    "Answers the index n such that the n-th zerofree number in base base is = m, where m is the receiver. Valid for base > 2.
    Usage: m zerofree_inverse: b [b = 10 for this sequence]
    Answer: n"
    | m p q s |
    m := self.
    s := 0.
    p := base.
    q := 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := base * p.
    q := (base - 1) * q].
    ^m - s
    "by Hieronymus Fischer, May 28 2014"
    
  • sh
    seq 0 1000 | grep -v 0; # Joerg Arndt, May 29 2011
    

Formula

a(n+1) = f(a(n)) with f(x) = 1 + if x mod 10 < 9 then x else 10*f([x/10]). - Reinhard Zumkeller, Nov 15 2009
From Hieronymus Fischer, Apr 30, May 30, Jun 08 2012, Feb 17 2019: (Start)
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 9)*10^j, where m = floor(log_9(8*n + 1)), b(j) = floor((8*n + 1 - 9^m)/(8*9^j)).
Also: a(n) = Sum_{j=0..m-1} (1 + A010878(b(j)))*10^j.
a(9*n + k) = 10*a(n) + k, k=1..9.
Special values:
a(k*(9^n - 1)/8) = k*(10^n - 1)/9, k=1..9.
a((17*9^n - 9)/8) = 2*10^n - 1.
a((9^n - 1)/8 - 1) = 10^(n-1) - 1, n > 1.
Inequalities:
a(n) <= (1/9)*((8*n+1)^(1/log_10(9)) - 1), equality holds for n=(9^k-1)/8, k>0.
a(n) > (1/10)*((8*n+1)^(1/log_10(9)) - 1), n > 0.
Lower and upper limits:
lim inf a(n)/10^log_9(8*n) = 1/10, for n -> infinity.
lim inf a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/10, for n -> infinity.
lim sup a(n)/10^log_9(8*n) = 1/9, for n -> infinity.
lim sup a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/9, for n -> infinity.
G.f.: g(x) = (x^(1/8)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(9/8)*(1 - 10z(j)^9 + 9z(j)^10)/((1-z(j))(1-z(j)^9)), where z(j) = x^9^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 10(x^9^j)^9 + 9(x^9^j)^10)*x^9^j*f_j(x)/(1-x^9^j), where f_j(x) = 10^j*x^((9^j-1)/8)/(1-(x^9^j)^9). Here, the f_j obey the recurrence f_0(x) = 1/(1-x^9), f_(j+1)(x) = 10x*f_j(x^9).
Also: g(x) = (1/(1-x))*((Sum{k=0..8} h_(9,k)(x)) - 9*h_(9,9)(x)), where h_(9,k)(x) = Sum_{j>=0} 10^j*x^((9^(j+1)-1)/8)*x^(k*9^j)/(1-x^9^(j+1)).
Generic formulas for analogous sequences with numbers expressed in base p and only using the digits 1, 2, 3, ... d, where 1 < d < p:
a(n) = Sum_{j=0..m-1} (1 + b(j) mod d)*p^j, where m = floor(log_d((d-1)*n+1)), b(j) = floor(((d-1)*n+1-d^m)/((d-1)*d^j)).
Special values:
a(k*(d^n-1)/(d-1)) = k*(10^n-1)/9, k=1..d.
a(d*((2d-1)*d^(n-1)-1)/(d-1)) = ((d+9)*10^n-d)/9 = 10^n + d*(10^n-1)/9.
a((d^n-1)/(d-1)-1) = d*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_d((d-1)*n+1)-1)/9, equality holds for n = (d^k-1)/(d-1), k > 0.
a(n) > (d/10)*(10^log_d((d-1)*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_d((d-1)*n) = d/90, for n -> infinity.
lim sup a(n)/10^log_d((d-1)*n) = 1/9, for n -> infinity.
G.f.: g(x) = (1/(1-x)) Sum_{j>=0} (1 - (d+1)(x^d^j)^d + d(x^d^j)^(d+1))*x^d^j*f_j(x)/(1-x^d^j), where f_j(x) = p^j*x^((d^j-1)/(d-1))/(1-(x^d^j)^d). Here, the f_j obey the recursion f_0(x) = 1/(1-x^d), f_(j+1)(x) = px*f_j(x^d).
(End)
A052382 = { n | A054054(n) > 0 }. - M. F. Hasler, Jan 23 2013
From Hieronymus Fischer, Feb 20 2019: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.696899720...
Sum_{n>=1} 1/a(n)^2 = 1.6269683705819...
Sum_{n>=1} 1/a(n) = 23.1034479... = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
(End)

Extensions

Typos in formula section corrected by Hieronymus Fischer, May 30 2012
Name clarified by Peter Luschny, Jun 20 2025

A034838 Numbers k that are divisible by every digit of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 111, 112, 115, 122, 124, 126, 128, 132, 135, 144, 155, 162, 168, 175, 184, 212, 216, 222, 224, 244, 248, 264, 288, 312, 315, 324, 333, 336, 366, 384, 396, 412, 424, 432, 444, 448
Offset: 1

Views

Author

Keywords

Comments

Subset of zeroless numbers A052382: Integers with at least one digit 0 (A011540) are excluded.
A128635(a(n)) = n.
Contains in particular all repdigits A010785 \ {0}. - M. F. Hasler, Jan 05 2020
The greatest term such that the digits are all different is the greatest Lynch-Bell number 9867312 = A115569(548) = A113028(10) [see Diophante link]. - Bernard Schott, Mar 18 2021
Named "nude numbers" by Katagiri (1982-83). - Amiram Eldar, Jun 26 2021

Examples

			36 is in the sequence because it is divisible by both 3 and 6.
48 is included because both 4 and 8 divide 48.
64 is not included because even though 4 divides 64, 6 does not.
		

References

  • Charles Ashbacher, Journal of Recreational Mathematics, Vol. 33 (2005), pp. 227. See problem number 2693.
  • Yoshinao Katagiri, Letter to the editor of the Journal of Recreational Mathematics, Vol. 15, No. 4 (1982-83).
  • Margaret J. Kenney and Stanley J. Bezuszka, Number Treasury 3: Investigations, Facts And Conjectures About More Than 100 Number Families, World Scientific, 2015, p. 175.
  • Thomas Koshy, Elementary Number Theory with Applications, Elsevier, 2007, p. 79.

Crossrefs

Intersection of A002796 (numbers divisible by each nonzero digit) and A052382 (zeroless numbers), or A002796 \ A011540 (numbers with digit 0).
Subsequence of A034709 (divisible by last digit).
Contains A007602 (multiples of the product of their digits) and subset A059405 (n is the product of its digits raised to positive powers), A225299 (divisible by square of each digit), and A066484 (n and its rotations are divisible by each digit).
Cf. A113028, A346267 (number of terms with n digits), A087140 (complement).
Supersequence of A115569 (with all different digits).

Programs

  • Haskell
    a034838 n = a034838_list !! (n-1)
    a034838_list = filter f a052382_list where
       f u = g u where
         g v = v == 0 || mod u d == 0 && g v' where (v',d) = divMod v 10
    -- Reinhard Zumkeller, Jun 15 2012, Dec 21 2011
    
  • Magma
    [n:n in [1..500]| not 0 in Intseq(n) and #[c:c in [1..#Intseq(n)]| n mod Intseq(n)[c] eq 0] eq #Intseq(n)] // Marius A. Burtea, Sep 12 2019
  • Maple
    a:=proc(n) local nn,j,b,bb: nn:=convert(n,base,10): for j from 1 to nops(nn) do b[j]:=n/nn[j] od: bb:=[seq(b[j],j=1..nops(nn))]: if map(floor,bb)=bb then n else fi end: 1,2,3,4,5,6,7,8,9,seq(seq(seq(a(100*m+10*n+k),k=1..9),n=1..9),m=0..6); # Emeric Deutsch
  • Mathematica
    divByEvryDigitQ[n_] := Block[{id = Union[IntegerDigits[n]]}, Union[ IntegerQ[ #] & /@ (n/id)] == {True}]; Select[ Range[ 487],  divByEvryDigitQ[#] &] (* Robert G. Wilson v, Jun 21 2005 *)
    Select[Range[500],FreeQ[IntegerDigits[#],0]&&AllTrue[#/ IntegerDigits[ #], IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 31 2019 *)
  • PARI
    is(n)=my(v=vecsort(eval(Vec(Str(n))),,8)); if(v[1]==0, return(0)); for(i=1, #v, if(n%v[i], return(0))); 1 \\ Charles R Greathouse IV, Apr 17 2012
    
  • PARI
    is_A034838(n)=my(d=Set(digits(n)));d[1]&&!forstep(i=#d,1,-1,n%d[i]&&return) \\ M. F. Hasler, Jan 10 2016
    
  • Python
    A034838_list = []
    for g in range(1,4):
        for n in product('123456789',repeat=g):
            s = ''.join(n)
            m = int(s)
            if not any(m % int(d) for d in s):
                A034838_list.append(m) # Chai Wah Wu, Sep 18 2014
    
  • Python
    for n in range(10**3):
        s = str(n)
        if '0' not in s:
            c = 0
            for i in s:
                if n%int(i):
                    c += 1
                    break
            if not c:
                print(n,end=', ') # Derek Orr, Sep 19 2014
    
  • Python
    # finite automaton accepting sequence (see comments in A346267)
    from math import gcd
    def lcm(a, b): return a * b // gcd(a, b)
    def inF(q): return q[0]%q[1] == 0
    def delta(q, c): return ((10*q[0]+c)%2520, lcm(q[1], c))
    def ok(n):
        q = (0, 1)
        for c in map(int, str(n)):
            if c == 0: return False # computation dies
            else: q = delta(q, c)
        return inF(q)
    print(list(filter(ok, range(450)))) # Michael S. Branicky, Jul 18 2021
    
Showing 1-10 of 77 results. Next