A034851 Rows of Losanitsch's triangle T(n, k), n >= 0, 0 <= k <= n.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 6, 3, 1, 1, 3, 9, 10, 9, 3, 1, 1, 4, 12, 19, 19, 12, 4, 1, 1, 4, 16, 28, 38, 28, 16, 4, 1, 1, 5, 20, 44, 66, 66, 44, 20, 5, 1, 1, 5, 25, 60, 110, 126, 110, 60, 25, 5, 1, 1, 6, 30, 85, 170, 236, 236, 170, 85, 30, 6, 1, 1, 6, 36, 110, 255
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 2, 4, 2, 1; 1, 3, 6, 6, 3, 1; 1, 3, 9, 10, 9, 3, 1; 1, 4, 12, 19, 19, 12, 4, 1; 1, 4, 16, 28, 38, 28, 16, 4, 1; 1, 5, 20, 44, 66, 66, 44, 20, 5, 1;
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- F. Al-Kharousi, R. Kehinde, and A. Umar, Combinatorial results for certain semigroups of partial isometries of a finite chain, The Australasian Journal of Combinatorics, Vol. 58, No. 3 (2014), pp. 363-375.
- Tewodros Amdeberhan, Mahir Bilen Can and Victor H. Moll, Broken bracelets, Molien series, paraffin wax and the elliptic curve of conductor 48, SIAM Journal of Discrete Math., Vol. 25, No. 4 (2011), p. 1843-1859; arXiv preprint, arXiv:1106.4693 [math.CO], 2011. See Theorem 2.8.
- Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
- Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis Vol. 12, No. 7 (2018), pp. 325-333.
- Stephen G. Hartke and A. J. Radcliffe, Signatures of Strings, Annals of Combinatorics, Vol. 17, No. 1 (March, 2013), pp. 131-150.
- Rethinasamy K. Kittappa, Combinatorial enumeration of rectangular kolam designs of the Tamil land, Abstracts Amer. Math. Soc., Vol. 29, No. 1 (2008), p. 24 (Abstract 1035-05-543).
- Wolfdieter Lang, Illustration of initial rows of triangle.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- Ministry of Foreign Affairs of Serbia, List of the Ministers for Foreign Affairs Since the Forming of the First Government in 1811-Sima Lozanic.
- Jesse Pajwani, Herman Rohrbach, and Anna M. Viergever, Compactly supported A^1-Euler characteristics of symmetric powers of cellular varieties, arXiv:2404.08486 [math.AG], 2024. See p. 15.
- N. J. A. Sloane, Classic Sequences.
- Eric Weisstein's World of Mathematics, Losanitsch's Triangle.
- Wikipedia, Sima Lozanic.
- Index entries for sequences related to trees
Crossrefs
Programs
-
Haskell
a034851 n k = a034851_row n !! k a034851_row 0 = [1] a034851_row 1 = [1,1] a034851_row n = zipWith (-) (zipWith (+) ([0] ++ losa) (losa ++ [0])) ([0] ++ a204293_row (n-2) ++ [0]) where losa = a034851_row (n-1) a034851_tabl = map a034851_row [0..] -- Reinhard Zumkeller, Jan 14 2012
-
Maple
A034851 := proc(n,k) option remember; local t; if k = 0 or k = n then return(1) fi; if n mod 2 = 0 and k mod 2 = 1 then t := binomial(n/2-1,(k-1)/2) else t := 0; fi; A034851(n-1,k-1)+A034851(n-1,k)-t; end: seq(seq(A034851(n, k), k=0..n), n=0..11);
-
Mathematica
t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]](* Jean-François Alcover, Feb 07 2012, after PARI *)
-
PARI
{T(n, k) = (1/2) *(binomial(n, k) + binomial(n%2, k%2) * binomial(n\2, k\2))}; /* Michael Somos, Oct 20 1999 */
Formula
G.f. for k-th column (if formatted as lower triangular matrix a(n, k)): x^k*Pe(floor((k+1)/2), x^2)/(((1-x)^(k+1))*(1+x)^(floor((k+1)/2))), where Pe(n, x^2) := Sum_{m=0..floor(n/2)} A034839(n, m)*x^(2*m) (row polynomials of Pascal array even numbered columns). - Wolfdieter Lang, May 08 2001
a(n, k) = a(n-1, k-1) + a(n-1, k) - C(n/2-1, (k-1)/2), where the last term is present only if n is even and k is odd (see Sloane link).
T(n, k) = T(n-2, k-2) + T(n-2, k) + C(n-2, k-1), n > 1.
Let P(n, x, y) = Sum_{m=0..n} a(n, m)*x^m*y^(n-m), then for x > 0, y > 0 we have P(n, x, y) = (x+y)*P(n-1, x, y) for n odd and P(n, x, y) = (x+y)*P(n-1, x, y) - x*y*(x^2+y^2)^((n-2)/2) for n even. - Gerald McGarvey, Feb 15 2005
T(n, k) = T(n-1, k-1) + T(n-1, k) - A204293(n-2, k-1), 0 < k <= n and n > 1. - Reinhard Zumkeller, Jan 14 2012
From Christopher Hunt Gribble, Feb 25 2014: (Start)
It appears that:
T(n,k) = C(n,k)/2, n even, k odd;
T(n,k) = (C(n,k) + C(n/2,k/2))/2, n even, k even;
T(n,k) = (C(n,k) + C((n-1)/2,(k-1)/2))/2, n odd, k odd;
T(n,k) = (C(n,k) + C((n-1)/2,k/2))/2, n odd, k even.
(End)
Extensions
More terms from James Sellers, May 04 2000
Name edited by Johannes W. Meijer, Aug 26 2013
Comments