A034867 Triangle of odd-numbered terms in rows of Pascal's triangle.
1, 2, 3, 1, 4, 4, 5, 10, 1, 6, 20, 6, 7, 35, 21, 1, 8, 56, 56, 8, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 11, 165, 462, 330, 55, 1, 12, 220, 792, 792, 220, 12, 13, 286, 1287, 1716, 715, 78, 1, 14, 364, 2002, 3432, 2002, 364, 14, 15, 455, 3003, 6435, 5005, 1365, 105, 1
Offset: 0
Examples
Triangle T starts: n\k 0 1 2 3 4 5 ... ---------------------------------------- 0: 1 1: 2 2: 3 1 3: 4 4 4: 5 10 1 5: 6 20 6 6: 7 35 21 1 7: 8 56 56 8 8: 9 84 126 36 1 9: 10 120 252 120 10 10: 11 165 462 330 55 1 11: 12 220 792 792 220 12 ... ... reformatted and extended by - _Wolfdieter Lang_, May 14 2025
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 136.
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
- Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 6.
- S.-M. Ma, On some binomial coefficients related to the evaluation of tan(nx), arXiv preprint arXiv:1205.0735 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 13 2012
- K. Oliver and H. Prodinger, The continued fraction expansion of Gauss' hypergeometric function and a new application to the tangent function, Transactions of the Royal Society of South Africa, Vol. 76 (2012), 151-154, [DOI], [PDF]. - From _N. J. A. Sloane_, Jan 03 2013
- Eric Weisstein's World of Mathematics, Tangent. [From _Eric W. Weisstein_, Oct 18 2008]
Crossrefs
From Wolfdieter Lang, May 14 2025:(Start)
Programs
-
Magma
/* as a triangle */ [[Binomial(n+1,2*k+1): k in [0..Floor(n/2)]]: n in [0..20]]; // G. C. Greubel, Mar 06 2018
-
Maple
seq(seq(binomial(n+1,2*k+1), k=0..floor(n/2)), n=0..14); # Emeric Deutsch, Apr 01 2005
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 12; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x] v[n_, x_] := u[n - 1, x] + v[n - 1, x] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] (* A034839 as a triangle *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] (* A034867 as a triangle *) (* Clark Kimberling, Feb 18 2012 *) Table[Binomial[n+1, 2*k+1], {n,0,20}, {k,0,Floor[n/2]}]//Flatten (* G. C. Greubel, Mar 06 2018 *)
-
PARI
for(n=0,20, for(k=0,floor(n/2), print1(binomial(n+1,2*k+1), ", "))) \\ G. C. Greubel, Mar 06 2018
Formula
T(n,k) = C(n+1,2k+1) = Sum_{i=k..n-k} C(i,k) * C(n-i,k).
E.g.f.: 1+(exp(x)*sinh(x*sqrt(y)))/sqrt(y). - Vladeta Jovovic, Mar 20 2005
G.f.: 1/((1-z)^2-t*z^2). - Emeric Deutsch, Apr 01 2005
T(n,k) = Sum_{j = 0..n} A034839(j,k). - Philippe Deléham, May 18 2005
Pell(n+1) = A000129(n+1) = Sum_{k=0..n} T(n,k) * 2^k = (1/n!) Sum_{k=0..n} A131980(n,k) * 2^k. - Tom Copeland, Nov 30 2007
O.g.f for column k, k>=0: (1/(1-x)^2)*(x/(1-x))^(2*k). See the G.f. of this array given above by Emeric Deutsch. - Wolfdieter Lang, Jan 18 2013
T(n,k) = (x^(2*k+1))*((1+x)^n-(1-x)^n)/2. - L. Edson Jeffery, Jan 15 2014
Extensions
More terms from Emeric Deutsch, Apr 01 2005
Comments