cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035005 Number of possible queen moves on an n X n chessboard.

Original entry on oeis.org

0, 12, 56, 152, 320, 580, 952, 1456, 2112, 2940, 3960, 5192, 6656, 8372, 10360, 12640, 15232, 18156, 21432, 25080, 29120, 33572, 38456, 43792, 49600, 55900, 62712, 70056, 77952, 86420, 95480, 105152, 115456, 126412, 138040, 150360
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

The number of (2 to n) digit sequences that can be found reading in any orientation, including diagonals, in an (n X n) grid. - Paul Cleary, Aug 12 2005
Obviously A035005(n) = A002492(n-1) + A035006 (n) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010

Examples

			3 X 3 board: queen has 8*6 moves and 1*8 moves, so a(3)=56.
		

Crossrefs

Cf. A033586 (King), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).
Cf. A162147.

Programs

  • Magma
    [(n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Table[(n-1)2n^2+(4n^3-6n^2+2n)/3,{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{0,12,56,152},40] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = (n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3.
a(n) = 4 * A162147(n-1). - Johannes W. Meijer, Feb 04 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=12, a(2)=56, a(3)=152. - Harvey P. Dale, Aug 24 2011
From Colin Barker, Mar 11 2012: (Start)
a(n) = 2*n*(1-6*n+5*n^2)/3.
G.f.: 4*x^2*(3+2*x)/(1-x)^4. (End)
E.g.f.: 2*exp(x)*x^2*(9 + 5*x)/3. - Stefano Spezia, Jul 31 2022

Extensions

More terms from Erich Friedman