A035038 a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,5).
0, 0, 0, 0, 0, 0, 1, 8, 37, 130, 386, 1024, 2510, 5812, 12911, 27824, 58651, 121670, 249528, 507624, 1026876, 2069256, 4158861, 8344056, 16721761, 33486026, 67025182, 134116144, 268313018, 536724316, 1073567387, 2147277280, 4294724471, 8589650318, 17179537972
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- J. Eckhoff, Der Satz von Radon in konvexen Produktstrukturen II, Monat. f. Math., 73 (1969), 7-30.
Crossrefs
Programs
-
Haskell
a035038 n = a035038_list !! n a035038_list = map (sum . drop 6) a007318_tabl -- Reinhard Zumkeller, Jun 20 2015
-
Magma
[n le 5 select 0 else (&+[Binomial(n,j): j in [6..n]]): n in [0..50]]; // G. C. Greubel, Mar 20 2023
-
Maple
a:= n-> (Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [8,-27,50,-55, 36,-13,2][i] else 0 fi)^(n))[1,7]: seq(a(n), n=0..30); # Alois P. Heinz, Aug 05 2008
-
Mathematica
Table[Sum[Binomial[n, k+6], {k,0,n}], {n,0,30}] (* Zerinvary Lajos, Jul 08 2009 *) Table[2^n-Total[Binomial[n,Range[0,5]]],{n,0,40}] (* Harvey P. Dale, Oct 24 2017 *)
-
SageMath
[sum(binomial(n,j) for j in range(6,n+1)) for n in range(51)] # G. C. Greubel, Mar 20 2023
Formula
From Paul Barry, Aug 23 2004: (Start)
G.f.: x^6/((1-2*x)*(1-x)^6).
a(n) = Sum_{k=0..n} C(n, k+6) = Sum_{k=6..n} C(n, k).
a(n) = 2*a(n-1) + C(n-1, 5). (End)
Comments