A035139 Digits of prime factors of k do not appear in k.
1, 4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 40, 44, 46, 48, 49, 54, 56, 57, 58, 60, 64, 66, 68, 69, 76, 78, 80, 81, 84, 86, 87, 88, 90, 96, 98, 99, 100, 106, 108, 111, 116, 118, 129, 134, 140, 144, 146, 148, 158, 160, 161, 166, 168, 174, 177, 180, 184, 188, 189, 196
Offset: 1
Examples
161 = 7 * 23 since {2,3,7} and {1,6} are separate digit sets.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1..200]| forall{a: a in PrimeDivisors(k)|Set(Intseq(a)) meet Set(Intseq(k)) eq {}}]; // Marius A. Burtea, Oct 08 2019
-
Maple
q:= n-> (f-> is(map(f, numtheory[factorset](n)) intersect {f(n)}={}))(d-> convert(d, base, 10)[]): select(q, [$1..200])[]; # Alois P. Heinz, Oct 11 2021
-
Mathematica
Fac[n_] := Flatten[IntegerDigits[Take[FactorInteger[n],All,1]]]; t={1}; Do[ If[!PrimeQ[n] && Intersection[Fac[n], IntegerDigits[n]] == {}, AppendTo[t,n]], {n,2,196}]; t (* Jayanta Basu, May 02 2013 *)
-
PARI
digsf(n) = my(f=factor(n), list=List()); for (k=1, #f~, my(dk=digits(f[k,1])); for (i=1, f[k,2], for (j=1, #dk, listput(list, dk[j])))); Vec(list); isok(m) = my(df=digsf(m), d=digits(m)); (#setintersect(Set(df), Set(d)) == 0); \\ Michel Marcus, Oct 11 2021
-
Python
from sympy import factorint def ok(n): return set(str(n)) & set("".join(str(p) for p in factorint(n))) == set() print(list(filter(ok, range(1601)))) # Michael S. Branicky, Oct 11 2021
Extensions
Offset corrected and a(1) added by Giovanni Resta, May 02 2013