cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035139 Digits of prime factors of k do not appear in k.

Original entry on oeis.org

1, 4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 40, 44, 46, 48, 49, 54, 56, 57, 58, 60, 64, 66, 68, 69, 76, 78, 80, 81, 84, 86, 87, 88, 90, 96, 98, 99, 100, 106, 108, 111, 116, 118, 129, 134, 140, 144, 146, 148, 158, 160, 161, 166, 168, 174, 177, 180, 184, 188, 189, 196
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Examples

			161 = 7 * 23 since {2,3,7} and {1,6} are separate digit sets.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..200]| forall{a: a in PrimeDivisors(k)|Set(Intseq(a)) meet Set(Intseq(k)) eq {}}]; // Marius A. Burtea, Oct 08 2019
    
  • Maple
    q:= n-> (f-> is(map(f, numtheory[factorset](n)) intersect
            {f(n)}={}))(d-> convert(d, base, 10)[]):
    select(q, [$1..200])[];  # Alois P. Heinz, Oct 11 2021
  • Mathematica
    Fac[n_] := Flatten[IntegerDigits[Take[FactorInteger[n],All,1]]]; t={1}; Do[ If[!PrimeQ[n] && Intersection[Fac[n], IntegerDigits[n]] == {}, AppendTo[t,n]], {n,2,196}]; t (* Jayanta Basu, May 02 2013 *)
  • PARI
    digsf(n) = my(f=factor(n), list=List()); for (k=1, #f~, my(dk=digits(f[k,1])); for (i=1, f[k,2], for (j=1, #dk, listput(list, dk[j])))); Vec(list);
    isok(m) = my(df=digsf(m), d=digits(m)); (#setintersect(Set(df), Set(d)) == 0); \\ Michel Marcus, Oct 11 2021
  • Python
    from sympy import factorint
    def ok(n):
        return set(str(n)) & set("".join(str(p) for p in factorint(n))) == set()
    print(list(filter(ok, range(1601))))  # Michael S. Branicky, Oct 11 2021
    

Extensions

Offset corrected and a(1) added by Giovanni Resta, May 02 2013