cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050698 Numbers that appear in A050695 but not in A035139.

Original entry on oeis.org

51, 74, 91, 94, 104, 114, 117, 119, 121, 133, 136, 141, 143, 154, 156, 159, 164, 169, 171, 176, 178, 186, 187, 194, 198, 203, 207, 209, 221, 253, 261, 291, 299, 301, 314, 319, 338, 341, 344, 346, 361, 364, 368, 374, 376, 377, 386, 391, 394, 398, 403, 404
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

None of the prime factors of a(n) are a substring of a(n) and at least one of the digits of the prime factors of a(n) appears in a(n).

Examples

			51 = 3*17 -> digit 1 appears in 5{1}.
		

Crossrefs

A035140 Digits of juxtaposition of prime factors of composite n appear also in n.

Original entry on oeis.org

25, 32, 121, 125, 128, 132, 135, 143, 175, 187, 243, 250, 256, 295, 312, 324, 341, 351, 375, 432, 451, 512, 625, 671, 679, 735, 781, 875, 928, 932, 1023, 1024, 1053, 1057, 1207, 1243, 1250, 1255, 1324, 1325, 1328, 1331, 1352, 1359, 1372, 1375, 1377, 1379
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Examples

			295 = 5 * 59 since {5,9} is a subset of {2,5,9}.
		

Crossrefs

Programs

  • Mathematica
    id[n_]:=Complement[Range[0,9],IntegerDigits[n]]; fac[n_]:=Flatten[IntegerDigits[Take[FactorInteger[n],All,1]]]; t={}; Do[If[!PrimeQ[n] && Intersection[id[n],fac[n]] == {}, AppendTo[t,n]], {n,2,1380}]; t (* Jayanta Basu, May 01 2013 *)
    Select[Range@10000, CompositeQ@# && SubsetQ[IntegerDigits@#,Flatten@IntegerDigits@(#[[1]] & /@ FactorInteger@#)] &] (* Hans Rudolf Widmer, May 11 2023 *)
  • Python
    from sympy import factorint, isprime
    def ok(n): return n > 1 and not isprime(n) and set("".join(str(p) for p in factorint(n))) <= set(str(n))
    print([k for k in range(1380) if ok(k)]) # Michael S. Branicky, May 11 2023

Extensions

Name clarified by Hans Rudolf Widmer, May 11 2023

A050695 Composite numbers k such that none of the prime factors of k is a substring of k.

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 40, 44, 46, 48, 49, 51, 54, 56, 57, 58, 60, 64, 66, 68, 69, 74, 76, 78, 80, 81, 84, 86, 87, 88, 90, 91, 94, 96, 98, 99, 100, 104, 106, 108, 111, 114, 116, 117, 118, 119, 121, 129, 133, 134, 136, 140, 141, 143, 144, 146
Offset: 1

Views

Author

Patrick De Geest, Aug 15 1999

Keywords

Comments

A131929(a(n)) = 0; together with 1, complement of A131930. - Reinhard Zumkeller, Jul 30 2007

Examples

			114 = 2*3*19.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; t={}; Do[le1=Max@@Length/@(t1=d[First/@FactorInteger[n]]); t2=Flatten[Table[Partition[d[n],i,1],{i,le1}],1]; If[!PrimeQ[n]&&Intersection[t1,t2]=={},AppendTo[t,n]],{n,2,146}]; t (* Jayanta Basu, May 31 2013 *)
    npfsQ[n_]:=Module[{idn=IntegerDigits[n],f=FactorInteger[n][[All,1]]}, And@@ Table[SequenceCount[idn,IntegerDigits[f[[i]]]]==0,{i, Length[ f]}]]; Select[Range[200],CompositeQ[#] && npfsQ[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 28 2016 *)

A035141 Composite numbers k such that digits in k and in juxtaposition of prime factors of k are the same (apart from multiplicity).

Original entry on oeis.org

132, 312, 735, 1255, 1377, 1775, 1972, 3792, 4371, 4773, 5192, 6769, 7112, 7236, 7371, 7539, 9321, 11009, 11099, 11132, 11163, 11232, 11255, 11375, 11913, 12176, 12326, 12595, 12955, 13092, 13175, 13312, 13377, 13491, 13755, 14842, 15033
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Examples

			1972 = {1,2,7,9} -> 2 * 2 * 17 * 29, so 1972 is a term.
		

Crossrefs

Programs

  • Mathematica
    Fac[n_]:=Sort[DeleteDuplicates[Flatten[IntegerDigits[Take[FactorInteger[n], All,1]]]]];Fn[n_]:=Sort[DeleteDuplicates[IntegerDigits[n]]];t={};Do[If[! PrimeQ[n]&&Fac[n]===Fn[n],AppendTo[t, n]],{n,2,15100}];t (* Jayanta Basu, May 02 2013 *)
  • PARI
    is(n)=if(isprime(n)||n<9,return(0));my(f=factor(n)[,1],v=[]);for(i=1,#f,v=concat(v,digits(f[i])));vecsort(digits(n),,8)==vecsort(v,,8) \\ Charles R Greathouse IV, May 02 2013

Formula

a(n) ~ n. Proof: the density of numbers without a given decimal digit in their prime factors is 0, which can be seen by looking at the first (or second, in the case of 0) digit and removing all primes with that digit. Taken with the 0 density of numbers missing any decimal digit the result is obtained. - Charles R Greathouse IV, May 02 2013

Extensions

Definition corrected by Charles R Greathouse IV, May 02 2013

A316227 Composite numbers k for which no nontrivial divisor shares any digits with k.

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 16, 18, 21, 27, 34, 38, 46, 49, 54, 56, 57, 58, 68, 69, 76, 78, 81, 86, 87, 106, 111, 116, 118, 129, 134, 146, 158, 161, 166, 177, 188, 201, 219, 247, 249, 259, 267, 289, 323, 329, 334, 356, 358, 388, 413, 446, 454, 458, 466, 477, 478, 489
Offset: 1

Views

Author

Jason Zimba, Jun 27 2018

Keywords

Comments

A nontrivial divisor of k means a divisor greater than 1 and less than k.

Examples

			The nontrivial divisors of 54 are 2, 3, 6, 9, 18, and 27, none of which have a digit 5 or 4.
The nontrivial divisors of 248629501 are 337 and 737773.
The nontrivial divisors of 321810649 are 557 and 577757.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local S;
      if isprime(n) then return false fi;
      S:= convert(convert(n,base,10),set);
      andmap(d -> convert(convert(d,base,10),set) intersect S = {}, numtheory:-divisors(n) minus {1,n})
    end proc:
    select(filter, [$4..1000]); # Robert Israel, Jul 22 2018
  • Mathematica
    MaxCheck = 1000; (* modify as desired *)
    ResultList = {};
    Do[
      If[
       Not[PrimeQ[k]] &&
        Intersection[
          Flatten[
           Map[
            IntegerDigits,
            Complement[Divisors[k], {1, k}]
            ]
           ],
          IntegerDigits[k]
          ] == {},
       ResultList = Append[ResultList, k]
       ],
      {k, 2, MaxCheck}];
    ResultList
    (* or *) Select[Range@500, CompositeQ@# && Intersection[ IntegerDigits@#, Flatten@ IntegerDigits@ Most@ Rest@ Divisors@ #] == {} &] (* Giovanni Resta, Jun 27 2018 *)
  • PARI
    isok(n) = {my(d=divisors(n), dd = Set(digits(n))); for (k=2, #d-1, if (#setintersect(Set(digits(d[k])), dd), return (0));); return (1);}
    lista(nn) = {forcomposite(n=1, nn, if (isok(n), print1(n, ", ")););} \\ Michel Marcus, Jul 03 2018

A348306 List of Agathokakological Numbers "k": string of digits of the juxtaposition of the prime factors of k has the same length as k but these digits do not appear in k.

Original entry on oeis.org

10, 14, 21, 49, 106, 111, 118, 129, 134, 146, 158, 161, 166, 177, 201, 219, 249, 259, 267, 329, 343, 413, 511, 553, 623, 1011, 1029, 1046, 1077, 1081, 1101, 1106, 1114, 1119, 1138, 1149, 1167, 1186, 1227, 1299, 1318, 1354, 1358, 1363, 1418, 1454, 1466, 1538, 1541, 1546, 1561, 1589, 1591
Offset: 1

Views

Author

Samuel Harkness, Oct 11 2021

Keywords

Comments

Theorem: (See PDF "PROOFS" in Links)
Of Agathokakological Numbers k,
No k have a leading 9.
No k end in 2 or 5.
10 is the only k to end in 0. It is also the only k with 5 as a prime factor.
Can only be square terms when k is of the order 10^m where m is odd.
For k written as a*10^m, k can only be even when 1<=a<1.888...
Empirical observation: When graphed with the log of the n-th term on x axis and the log of the n-th term's value on the y axis a pattern appears with a similar shape for each new power of ten (see figure "LogLogGraph" in Links)
Special cases 28651 = 7*4093 and 65821 = 7*9043 use all digits 0-9 once.
"Agathokakological" is a Greek word meaning "composed of both good and evil." (Merriam-Webster) The composition (prime factorization) of Agathokakological Numbers is both good (same length) and evil (no common digits).

Examples

			158 = 2 * 79 since {2,7,9} do not appear in {1,5,8} and both have 3 digits.
		

Crossrefs

Intersection of A035139 and A109608.
Subsequence of A047201 from n=2.

Programs

  • Mathematica
    q[n_] := Module[{d = IntegerDigits[n], f = FactorInteger[n]}, Length[d] == Plus @@ ((Last[#]*IntegerLength[First[#]]) & /@ f ) && Intersection[d, Join @@ IntegerDigits[f[[;; , 1]]]] == {}]; Select[Range[1600], q] (* Amiram Eldar, Oct 12 2021 *)
  • PARI
    digsf(n) = my(f=factor(n), list=List()); for (k=1, #f~, my(dk=digits(f[k,1])); for (i=1, f[k,2], for (j=1, #dk, listput(list, dk[j])))); Vec(list);
    isokd(m) = my(df=digsf(m), d=digits(m)); (#df == #d) && (#setintersect(Set(df), Set(d)) == 0); \\ Michel Marcus, Oct 11 2021
    
  • Python
    from sympy import factorint
    def ok(n):
        s, f = str(n), factorint(n)
        pfd = set("".join(str(p) for p in f))
        if set(s) & pfd != set(): return False
        return len(s) == sum(len(str(p))*f[p] for p in f)
    print(list(filter(ok, range(1601)))) # Michael S. Branicky, Oct 11 2021
Showing 1-6 of 6 results.