A035309 Triangle read by rows giving number of ways to glue sides of a 2n-gon so as to produce a surface of genus g.
1, 1, 2, 1, 5, 10, 14, 70, 21, 42, 420, 483, 132, 2310, 6468, 1485, 429, 12012, 66066, 56628, 1430, 60060, 570570, 1169740, 225225, 4862, 291720, 4390386, 17454580, 12317877, 16796, 1385670, 31039008, 211083730, 351683046, 59520825, 58786, 6466460, 205633428, 2198596400, 7034538511, 4304016990
Offset: 0
Examples
Triangle starts: n\g [0] [1] [2] [3] [4] [5] [0] 1; [1] 1; [2] 2; 1; [3] 5, 10; [4] 14, 70, 21; [5] 42, 420, 483; [6] 132, 2310, 6468, 1485; [7] 429, 12012, 66066, 56628; [8] 1430, 60060, 570570, 1169740, 225225; [9] 4862, 291720, 4390386, 17454580, 12317877; [10] 16796, 1385670, 31039008, 211083730, 351683046, 59520825; [11] ...
Links
- Gheorghe Coserea, Rows n = 0..200, flattened
- E. T. Akhmedov and Sh. Shakirov, Gluing of Surfaces with Polygonal Boundaries, arXiv:0712.2448 [math.CO], 2007-2008, see p. 1.
- Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
- Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
- Benoit Collins, Ion Nechita, and Deping Ye, The absolute positive partial transpose property for random induced states, Random Matrices: Theory Appl. 01, 1250002 (2012); arXiv:1108.1935 [math-ph], 2011.
- I. P. Goulden and A. Nica, A direct bijection for the Harer-Zagier formula, J. Comb. Theory, A, 111, No. 2 (2005), 224-238.
- J. L. Harer and D. B. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math., 85, No.3 (1986), 457-486.
- S. Lando and A. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer, 2004, p. 157.
- B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, C. R. Acad. Sci. Paris, Serie I, 333, No.3 (2001), 155-160.
- A. Mironov, A. Morozov, A. Popolitov, and Sh. Shakirov, Summing up perturbation series around superintegrable point, arXiv:2401.14392 [hep-th], 2024.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Theory B 13 (1972), 192-218 (Tab. 1).
- Nikolai Wyderka and Andreas Ketterer, Probing the geometry of correlation matrices with randomized measurements, arXiv:2211.09610 [quant-ph], 2022.
- Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
- Jian Zhou, Hermitian One-Matrix Model and KP Hierarchy, arXiv:1809.07951 [math-ph], 2018.
Crossrefs
Programs
-
Mathematica
a[n_, g_] := (2n)!/(n+1)!/(n-2g)! Coefficient[Series[(x/2/Tanh[x/2])^(n+1), {x, 0, n}], x, 2g]; Flatten[DeleteCases[#, 0]& /@ Table[a[n, g], {n, 0, 11}, {g, 0, n}]] (* Jean-François Alcover, Aug 30 2011, after E. T. Akhmedov & Sh. Shakirov *)
-
PARI
N = 10; F = 1; gmax(n) = n\2; Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = { Qset(0, 0, x); for (n = 1, length(Q)-1, for (g = 0, gmax(n), my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x + O('x^(F+1))); concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)))) \\ Gheorghe Coserea, Mar 16 2016
Formula
Let c be the number of cycles that appear in product of a (2n)-cycle and a product of n disjoint transpositions; genus is g = (n-c+1)/2.
The Harer-Zagier formula: 1 + 2*Sum_{g>=0} Sum_{n>=2*g} a(n,g) * x^(n+1) * y^(n-2*g+1) / (2*n-1)!! = (1+x/(1-x))^y.
Equivalently, for n >= 0, Sum_{g=0..floor(n/2)} a(n,g)*y^(n-2*g+1) = (2*n-1)!! * Sum_{k=0..n} 2^k * C(n,k) * C(y,k+1).
(n+2)*a(n+1,g) = (4*n+2)*a(n,g) + (4*n^3-n)*a(n-1,g-1) for n,g > 0, a(0,0)=1 and a(0,g)=0 for g > 0.
The g.f. for column g > 0 is x^(2*g) * A270790(g) * P_g(x) / (1-4*x)^(3*g-1/2), where P_g(x) is the polynomial associated with row g of the triangle A270791. - Gheorghe Coserea, Apr 17 2016
Extensions
More terms and additional comments and references from Valery A. Liskovets, Apr 13 2006
Offset corrected by Gheorghe Coserea, Mar 17 2016
Comments