cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035344 Expansion of 1/((1 - x)*(1 - 4*x + 2 * x^2)).

Original entry on oeis.org

1, 5, 19, 67, 231, 791, 2703, 9231, 31519, 107615, 367423, 1254463, 4283007, 14623103, 49926399, 170459391, 581984767, 1987020287, 6784111615, 23162405887, 79081400319, 270000789503, 921840357375, 3147359850495, 10745758687231, 36688315047935, 125261742817279
Offset: 0

Views

Author

Keywords

References

  • S. Bilotta, E. Pergola, R. Pinzani, and S. Rinaldi, Recurrence Relations, Succession Rules, and the Positivity Problem, in Language and Automata Theory and Applications, 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings, Pages 499-510, Lecture Notes Comp. Sci. Vol. 8977.

Crossrefs

Partial sums of A007070.

Programs

  • Maple
    a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-2*a[n-2]+1 od: seq(a[n],n=0..50); # after Miklos Kristof
  • Mathematica
    Join[{a=1,b=5},Table[c=4*b-2*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
    CoefficientList[Series[1/((1-x)(1-4x+2x^2)),{x,0,30}],x] (* or *) LinearRecurrence[ {5,-6,2},{1,5,19},30] (* Harvey P. Dale, Mar 28 2016 *)
  • PARI
    Vec(1/((1-x)*(1-4*x+2*x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012

Formula

a(n) = 2*A007052(n)-1. The sequence 0, 0, 1, 5, 19, ... is the binomial transform of the Pell numbers A000129, preceded by an additional 0. a(n) = (1 + 1/sqrt(2))(2 + sqrt(2))^n + (1 - 1/sqrt(2))(2 - sqrt(2))^n - 1. - Paul Barry, Jul 16 2003
a(-1)=0, a(0)=1, a(n) = 4*a(n-1) - 2*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
E.g.f.: exp(2*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)) - cosh(x) - sinh(x). - Stefano Spezia, May 20 2024

Extensions

a(23) onwards from Andrew Howroyd, Jan 28 2024