cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035929 Number of Dyck n-paths starting U^mD^m (an m-pyramid), followed by a pyramid-free Dyck path.

Original entry on oeis.org

0, 1, 1, 1, 2, 6, 19, 61, 200, 670, 2286, 7918, 27770, 98424, 351983, 1268541, 4602752, 16799894, 61642078, 227239086, 841230292, 3126039364, 11656497518, 43601626146, 163561902392, 615183356156, 2319423532024, 8764535189296, 33187922345210, 125912855167740
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is -A128834. - Paul Barry, Jul 04 2009

Examples

			The a(5) = 6 cases are UUUUUDDDDD, UDUUUDUDDD, UDUUUDDUDD, UDUUDUUDDDD, UDUUDUDUDUDD and UUDDUUDUDD.
		

Crossrefs

Cf. A082989.

Programs

  • Magma
    /* Expansion */ Q:=Rationals(); R:=PowerSeriesRing(Q,30); R!(2*x/(1+x+(1-x)*Sqrt(1-4*x))); // G. C. Greubel, Jan 15 2018
  • Maple
    A:= proc(n) option remember; if n=0 then 0 else convert (series ((A(n-1)^2 *(x^2-2*x+2) +x)/ (x+1), x,n+1), polynom) fi end: a:= n-> coeff (A(n), x,n): seq (a(n), n=0..25); # Alois P. Heinz, Aug 23 2008
  • Mathematica
    CoefficientList[Series[2*x/(1+x+(1-x)*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(2*x/(1+x+(1-x)*sqrt(1-4*x)))) \\ G. C. Greubel, Jan 15 2018
    

Formula

G.f.: A(x) satisfies A^2*(x^2-2*x+2) - A*(x+1) + x = 0.
The generating function can be written as x/(1-x) times that of A082989.
G.f.: (2*x)/(1+x+(1-x)*sqrt(1-4*x)) = 1/(1-x(1-x)/(1-x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, Jul 04 2009
From Gary W. Adamson, Jul 14 2011: (Start)
a(n), n>0; is the upper left term in M^(n-1), where M is the infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
0, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 2*n*a(n) +4*(-3*n+4)*a(n-1) +(19*n-44)*a(n-2) + (-13*n + 36)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ 3 * 4^n / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
From Alexander Burstein, Aug 05 2017: (Start)
G.f: A = x/(1-(1-x)*x*C) = x*C/(1+x^2*C^2) = x*C^3/(1+2*x*C^3), where C is the g.f. of A000108.
A/x composed with x*C = g.f. of A165543, where A and C are as above. (End)

Extensions

Edited by Louis Shapiro, Feb 16 2005
Wrong g.f. removed by Vaclav Kotesovec, Feb 12 2014