A114589
Number of hill-free Dyck paths of semilength n+3 and having no peaks at even levels (a hill in a Dyck path is a peak at level 1).
Original entry on oeis.org
1, 1, 3, 7, 17, 43, 110, 286, 753, 2003, 5376, 14540, 39589, 108427, 298512, 825664, 2293271, 6393539, 17885835, 50191175, 141247519, 398537101, 1127203038, 3195229662, 9076078057, 25830193513, 73643406563, 210312889095
Offset: 0
a(2)=3 because we have UUUDDUUDDD, UUUDUDUDDD and UUUUUDDDDD, where U=(1,1), D=(1,-1).
-
G:=(1-z-2*z^2-2*z^3-sqrt(1-3*z^2-2*z))/2/z^4/(2+2*z+z^2): Gser:=series(G,z=0,35): 1, seq(coeff(Gser,z^n),n=1..30);
-
CoefficientList[Series[(1-x-2*x^2-2*x^3-Sqrt[1-3*x^2-2*x])/2/x^4 /(2+2*x+x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
x='x+('x^50); Vec((1-x-2*x^2-2*x^3-sqrt(1-3*x^2-2*x))/(2*x^4*(2+2*x+x^2))) \\ G. C. Greubel, Mar 17 2017
A165543
Number of permutations of length n which avoid both the patterns 3241 and 4321. Or, equivalently, avoids both 1234 and 1342.
Original entry on oeis.org
1, 1, 2, 6, 22, 89, 380, 1678, 7584, 34875, 162560, 766124, 3644066, 17469863, 84324840, 409471090, 1998933556, 9804748548, 48298256084, 238840150970, 1185256302910, 5900843531665, 29464355189120, 147522603762870, 740471407808372, 3725334547101464, 18782663124890072, 94889671255981134
Offset: 0
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
- Christian Bean, Combinatorial Exploration and Permutation Classes, talk in RUTGERS Experimental Mathematics Seminar Series, Thursday, March 27, 2025, (https://sites.math.rutgers.edu/~zeilberg/expmath/). The last slide is devoted to this sequence - N. J. A. Sloane, Apr 06 2025
- Vincenzo Librandi, Table of n, a(n) for n = 0..270
- J. Bloom and V. Vatter, Two Vignettes On Full Rook Placements, arXiv preprint arXiv:1310.6073 [math.CO], 2013.
- J. Bloom and V. Vatter, Two Vignettes On Full Rook Placements, The Australasian Journal of Combinatorics, vol. 64(1), 2016, p. 80.
- David Callan, Permutations avoiding 4321 and 3241 have an algebraic generating function, arXiv:1306.3193 [math.CO], 2013.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
- Toufik Mansour, Howard Skogman, and Rebecca Smith, Passing through a stack k times with reversals, arXiv:1808.04199 [math.CO], 2018.
- Permutation Pattern Avoidance Library (PermPAL), Av(1234,1342).
- V. Vatter, Enumeration schemes for restricted permutations, Combin., Prob. and Comput. 17 (2008), 137-159.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
-
a[0] = 1; a[n_] := Sum[ (m*Sum[ (k*Binomial[m+2*k-1, m+k-1]*Binomial[2*(n-m)-k-1, n-m-1])/(m + k), {k, 1, n-m}])/(n-m), {m, 1, n-1}] + 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 25 2013 *) (* adapted by Vincenzo Librandi, May 14 2017 *)
-
a(n):=if n=0 then 0 else sum((m*sum((k*binomial(m+2*k-1,m+k-1)*binomial(2*(n-m)-k-1,n-m-1))/(m+k),k,1,n-m))/(n-m),m,1,n-1)+1; /* Vladimir Kruchinin, May 12 2011 */
A182486
Expansion of 2 * (2 + x) / (4 - x - x * sqrt(1 - 4*x)) in powers of x.
Original entry on oeis.org
1, 1, 0, -1, -2, -4, -10, -29, -90, -290, -960, -3246, -11164, -38934, -137358, -489341, -1757882, -6360634, -23160528, -84802606, -312041692, -1153271984, -4279311348, -15935808866, -59537435012, -223099337404, -838282693560, -3157706225584, -11922241414880
Offset: 0
G.f. = 1 + x - x^3 - 2*x^4 - 4*x^5 - 10*x^6 - 29*x^7 - 90*x^8 - 290*x^9 + ...
1 = det([ 1]) = det([ 1]). -1 = det([ 1, 1; 1, 0]) = det([ 1, 0; 0, -1]). 1 = det([ 1, 1, 0; 1, 0, -1; 0, -1, -2]) = det([ 1, 0, -1; 0, -1, -2; -2, -4, -10]).
-
m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(2*(2+x)/(4-x -x*Sqrt(1-4*x)))); // G. C. Greubel, Aug 11 2018
-
CoefficientList[Series[2*(2+x)/(4-x -x*Sqrt[1-4*x]), {x, 0, 50}], x] (* G. C. Greubel, Aug 11 2018 *)
-
{a(n) = if( n<0, 0, polcoeff( 2 * (2 + x) / (4 - x - x * sqrt(1 - 4*x + x * O(x^n))) ,n))}
-
{a(n) = if( n<1, n==0, polcoeff( subst( (1 + x) / (1 + x^2), x, serreverse( x - x^2 + x * O(x^n))), n))}
Showing 1-3 of 3 results.
Comments