cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114589 Number of hill-free Dyck paths of semilength n+3 and having no peaks at even levels (a hill in a Dyck path is a peak at level 1).

Original entry on oeis.org

1, 1, 3, 7, 17, 43, 110, 286, 753, 2003, 5376, 14540, 39589, 108427, 298512, 825664, 2293271, 6393539, 17885835, 50191175, 141247519, 398537101, 1127203038, 3195229662, 9076078057, 25830193513, 73643406563, 210312889095
Offset: 0

Views

Author

Emeric Deutsch, Dec 11 2005

Keywords

Comments

Column 0 of A114588. The number of hill-free Dyck paths having no peaks at odd level are given by the Riordan numbers (A005043).
From Paul Barry, Jul 05 2009: (Start)
The sequence 1,0,0,1,1,3,7,...
has g.f. ((1+x)*(1+2*x)-sqrt((1+x)*(1-3*x)))/(2*x*(2+2*x+x^2)).
It is the inverse binomial transform of A035929(n+1). (End)

Examples

			a(2)=3 because we have UUUDDUUDDD, UUUDUDUDDD and UUUUUDDDDD, where U=(1,1), D=(1,-1).
		

Crossrefs

Programs

  • Maple
    G:=(1-z-2*z^2-2*z^3-sqrt(1-3*z^2-2*z))/2/z^4/(2+2*z+z^2): Gser:=series(G,z=0,35): 1, seq(coeff(Gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[(1-x-2*x^2-2*x^3-Sqrt[1-3*x^2-2*x])/2/x^4 /(2+2*x+x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+('x^50); Vec((1-x-2*x^2-2*x^3-sqrt(1-3*x^2-2*x))/(2*x^4*(2+2*x+x^2))) \\ G. C. Greubel, Mar 17 2017

Formula

G.f.: (1 -z -2*z^2 -2*z^3 -sqrt(1-3*z^2-2*z))/(2*z^4*(2+2*z+z^2)).
a(n) ~ 3^(n+11/2) / (50*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: 2*(n+4)*a(n) +2*(-n-1)*a(n-1) +3*(-3*n-4)*a(n-2) +(-8*n-11)*a(n-3) +3*(-n-1)*a(n-4)=0. - R. J. Mathar, Jul 02 2018

A165543 Number of permutations of length n which avoid both the patterns 3241 and 4321. Or, equivalently, avoids both 1234 and 1342.

Original entry on oeis.org

1, 1, 2, 6, 22, 89, 380, 1678, 7584, 34875, 162560, 766124, 3644066, 17469863, 84324840, 409471090, 1998933556, 9804748548, 48298256084, 238840150970, 1185256302910, 5900843531665, 29464355189120, 147522603762870, 740471407808372, 3725334547101464, 18782663124890072, 94889671255981134
Offset: 0

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Comments

These permutations have an enumeration scheme of depth 4.
Conjecturally, a(n) is the number of permutations pi of length n such that s(pi) avoids the patterns 231 and 321, where s denotes West's stack-sorting map. - Colin Defant, Sep 17 2018

Examples

			There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
		

References

  • Christian Bean, Combinatorial Exploration and Permutation Classes, talk in RUTGERS Experimental Mathematics Seminar Series, Thursday, March 27, 2025, (https://sites.math.rutgers.edu/~zeilberg/expmath/). The last slide is devoted to this sequence - N. J. A. Sloane, Apr 06 2025

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[ (m*Sum[ (k*Binomial[m+2*k-1, m+k-1]*Binomial[2*(n-m)-k-1, n-m-1])/(m + k), {k, 1, n-m}])/(n-m), {m, 1, n-1}] + 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 25 2013 *) (* adapted by Vincenzo Librandi, May 14 2017 *)
  • Maxima
    a(n):=if n=0 then 0 else sum((m*sum((k*binomial(m+2*k-1,m+k-1)*binomial(2*(n-m)-k-1,n-m-1))/(m+k),k,1,n-m))/(n-m),m,1,n-1)+1; /* Vladimir Kruchinin, May 12 2011 */

Formula

From Vladimir Kruchinin, May 12 2011: (Start)
G.f.: 1/(1-x*A000108(x*A000108(x)))
a(n) = sum(m=1..n-1, (m*sum(k=1..n-m, (k*binomial(m+2*k-1,m+k-1)*binomial(2*(n-m)-k-1,n-m-1))/(m+k)))/(n-m))+1. (End)
From Gary W. Adamson, Nov 14 2011: (Start)
a(n) is the top left term in M^n, M = an infinite square production matrix with A000108 as the left column, as follows:
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
2, 1, 1, 1, 0, ...
5, 1, 1, 1, 1, ...
... (End)
G.f.: A035929(x)/x composed with x*A000108(x). - Alexander Burstein, Aug 07 2017
a(n) ~ 2^(4*n + 3/2) / (25 * sqrt(Pi) * n^(3/2) * 3^(n - 3/2)). - Vaclav Kotesovec, Aug 14 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 18 2016
Definition expanded by N. J. A. Sloane, Apr 28 2025

A182486 Expansion of 2 * (2 + x) / (4 - x - x * sqrt(1 - 4*x)) in powers of x.

Original entry on oeis.org

1, 1, 0, -1, -2, -4, -10, -29, -90, -290, -960, -3246, -11164, -38934, -137358, -489341, -1757882, -6360634, -23160528, -84802606, -312041692, -1153271984, -4279311348, -15935808866, -59537435012, -223099337404, -838282693560, -3157706225584, -11922241414880
Offset: 0

Views

Author

Michael Somos, May 02 2012

Keywords

Comments

HANKEL transform of sequence and the sequence omitting a(0) is the sequence A033999(n) = (-1)^n. This is the unique sequence with that property.

Examples

			G.f. = 1 + x - x^3 - 2*x^4 - 4*x^5 - 10*x^6 - 29*x^7 - 90*x^8 - 290*x^9 + ...
1 = det([ 1]) = det([ 1]). -1 = det([ 1, 1; 1, 0]) = det([ 1, 0; 0, -1]). 1 = det([ 1, 1, 0; 1, 0, -1; 0, -1, -2]) = det([ 1, 0, -1; 0, -1, -2; -2, -4, -10]).
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(2*(2+x)/(4-x -x*Sqrt(1-4*x)))); // G. C. Greubel, Aug 11 2018
  • Mathematica
    CoefficientList[Series[2*(2+x)/(4-x -x*Sqrt[1-4*x]), {x, 0, 50}], x] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 * (2 + x) / (4 - x - x * sqrt(1 - 4*x + x * O(x^n))) ,n))}
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( subst( (1 + x) / (1 + x^2), x, serreverse( x - x^2 + x * O(x^n))), n))}
    

Formula

G.f.: 2 * (2 + x) / (4 - x - x * sqrt(1 - 4*x)).
G.f.: (4 - x + x * sqrt(1 - 4*x)) / (2 * (2 - 2*x + x^2)).
G.f.: 1 / (1 - x / (1 + x / (1 - x / (1 - x / (1 - x / ...))))).
a(n) = -A135334(n - 2) if n > 2. a(n) - a(n+1) = A035929(n).
D-finite with recurrence: 2*(-n+1)*a(n) +2*(5*n-11)*a(n-1) +3*(-3*n+7)*a(n-2) +2*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jun 08 2016
Showing 1-3 of 3 results.