cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A036087 Centered cube numbers: a(n) = (n+1)^9 + n^9.

Original entry on oeis.org

1, 513, 20195, 281827, 2215269, 12030821, 50431303, 174571335, 521638217, 1387420489, 3357947691, 7517728043, 15764279725, 31265546157, 59104406159, 107162836111, 187307353233, 316947166865
Offset: 0

Views

Author

Keywords

Comments

Never prime nor semiprime, as a(n) = (2n+1) * (n^2 + n + 1) * (n^6 + 3n^5 + 12n^4 + 19n^3 + 15n^2 + 6n + 1). - Jonathan Vos Post, Aug 26 2011
Triprimes (A014612) if n = 2, 5, 6, 14, 21, 75, 90, ... - R. J. Mathar, Aug 27 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^9+n^9: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Mathematica
    Total/@Partition[Range[0,20]^9,2,1] (* Harvey P. Dale, Jan 31 2015 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,513,20195,281827,2215269,12030821,50431303,174571335,521638217,1387420489},20] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(n+1)^9+n^9 \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(n) = A001017(n+1) + A001017(n).
G.f.: (1+x)*(x^8 + 502*x^7 + 14608*x^6 + 88234*x^5 + 156190*x^4 + 88234*x^3 + 14608*x^2 + 502*x + 1) / (x-1)^10. - R. J. Mathar, Aug 27 2011

A036088 Centered cube numbers: (n+1)^10 + n^10.

Original entry on oeis.org

1, 1025, 60073, 1107625, 10814201, 70231801, 342941425, 1356217073, 4560526225, 13486784401, 35937424601, 87854788825, 199775856073, 427113146825, 865905045601, 1676162018401, 3115505528225
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n^2 + 2n + 1) * (n^8 + 4n^7 + 18n^6 + 40n^5 + 56n^4 + 50n^3 + 27n^2 + 8n + 1), multiple of A001844(n). Semiprime for n in {2, 4, 7, 14, 19, 22, 32, 60, 65, 70, 87, 99, 102, 135, 137, ...}. - Jonathan Vos Post, Aug 26 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

  • Magma
    [(n+1)^10+n^10: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
  • Mathematica
    Total/@Partition[Range[0,20]^10,2,1] (* Harvey P. Dale, Aug 04 2019 *)

Formula

G.f.: -(x^8 + 1012*x^7 + 46828*x^6 + 408364*x^5 + 901990*x^4 + 408364*x^3 + 46828*x^2 + 1012*x + 1)*(1+x)^2 / (x-1)^11. - R. J. Mathar, Aug 27 2011

A036091 Centered cube numbers: (n+1)^13+n^13.

Original entry on oeis.org

1, 8193, 1602515, 68703187, 1287811989, 14281397141, 109949704423, 646644824295, 3091621642217, 12541865828329, 44522712143931, 141515917523003, 409868311971325, 1096589879846397, 2739909841613519
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n + 1) * (n^12 + 6n^11 + 36n^10 + 125n^9 + 295n^8 + 496n^7 + 610n^6 + 553n^5 + 367n^4 + 174n^3 + 56n^2 + 11n + 1). Semiprime for n in {1, 8, 15, 21, 86, 135, 141, 249, 260, 278, 323, 326, 363, ...}. - Jonathan Vos Post, Aug 26 2011

Crossrefs

Programs

A036092 Centered cube numbers: a(n) = (n+1)^14 + n^14.

Original entry on oeis.org

1, 16385, 4799353, 273218425, 6371951081, 84467679721, 756587236945, 5076269583953, 27274838966065, 122876792454961, 479749833583241, 1663668298132105, 5221294850248153, 15049383211257305, 40304932850948641, 101250520063318561, 240435420597328865
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n^2 + 2n + 1) * (n^12 + 6n^11 + 39n^10 + 140n^9 + 341n^8 + 590n^7 + 741n^6 + 680n^5 + 451n^4 + 210n^3 + 65n^2 + 12n + 1). Semiprime for n in {2, 5, 22, 24, 34, 35, 39, 84, 217, 220, 285, ...}. - Jonathan Vos Post, Aug 26 2011

Crossrefs

Programs

Formula

G.f.: -(x +1)^2*(x^12 +16368*x^11 +4520946*x^10 +193889840*x^9 +2377852335*x^8 +10465410528*x^7 +17505765564*x^6 +10465410528*x^5 +2377852335*x^4 +193889840*x^3 +4520946*x^2 +16368*x +1) / (x -1)^15. - Colin Barker, Feb 16 2015

A194553 Centered cube numbers: (n+1)^25 + n^25.

Original entry on oeis.org

1, 33554433, 847322163875, 1126747195452067, 299149123783795749, 28728311253806654501, 1369498907693894602183, 39120000482621126610375, 755676919554809750479817, 10717897987691852588770249, 118347059433883722041830251
Offset: 0

Views

Author

Jonathan Vos Post, Aug 28 2011

Keywords

Comments

Can never be prime as a(n) = (2*n+1) * (n^4 + 2*n^3 + 4*n^2 + 3*n+1) * (n^20 + 10*n^19 + 120*n^18 + 795*n^17 + 3685*n^16 + 12752*n^15 + 33965*n^14 + 71205*n^13 + 119580*n^12 + 162965*n^11 + 181754*n^10 + 166595*n^9 + 125515*n^8 +77415*n^7 + 38745*n^6 + 15503*n^5 + 4845*n^4 + 1140*n^3 + 190*n^2 + 20*n + 1).

Crossrefs

Programs

  • Magma
    [(n+1)^25+n^25: n in [0..10]]; // Vincenzo Librandi, Sep 21 2011
  • Mathematica
    Total/@Partition[Range[0,20]^25,2,1] (* Harvey P. Dale, Dec 03 2015 *)

A036095 Centered cube numbers: a(n) = (n+1)^17 + n^17.

Original entry on oeis.org

1, 131073, 129271235, 17309009347, 780119322309, 17689598897861, 249557173431943, 2484430327672455, 18928981513351817, 116677181699666569, 605447028499293771, 2724058135239730763, 10869027026121774925
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n + 1) * (n^16 + 8n^15 + 64n^14 + 308n^13 + 1036n^12 + 2576n^11 + 4900n^10 + 7274n^9 + 8518n^8 + 7896n^7 + 5776n^6 + 3300n^5 + 1444n^4 + 468n^3 + 106n^2 + 15n + 1). Semiprime for n in {1, 5, 21, 29, 33, ...}. - Jonathan Vos Post, Aug 27 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

A194566 Centered cube numbers: (n+1)^100+n^100.

Original entry on oeis.org

1, 1267650600228229401496703205377, 515377520732011332304111729993850674198810727377, 1606938044259505653062694103672199063651968615055494942823377
Offset: 0

Views

Author

Jonathan Vos Post, Aug 29 2011

Keywords

Comments

Can never be prime, and after a(0) must have at least 3 prime factors, as a(n) = (2*n^4 + 4*n^3 + 6*n^2 + 4*n + 1) * p_16(n) * p_80(n).

Crossrefs

Programs

  • Maple
    a:= n-> (n+1)^100 +n^100: seq (a(n), n=0..20);
  • Mathematica
    Total/@Partition[Range[0,5]^100,2,1] (* Harvey P. Dale, Aug 10 2013 *)

Formula

a(n) = (n+1)^100 + n^100.

A210694 T(n,k)=Number of (n+1)X(n+1) -k..k symmetric matrices with every 2X2 subblock having sum zero.

Original entry on oeis.org

5, 13, 9, 25, 35, 17, 41, 91, 97, 33, 61, 189, 337, 275, 65, 85, 341, 881, 1267, 793, 129, 113, 559, 1921, 4149, 4825, 2315, 257, 145, 855, 3697, 10901, 19721, 18571, 6817, 513, 181, 1241, 6497, 24583, 62281, 94509, 72097, 20195, 1025, 221, 1729, 10657, 49575
Offset: 1

Views

Author

R. H. Hardin, with R. J. Mathar in the Sequence Fans Mailing List, Mar 30 2012

Keywords

Comments

Table starts
...5....13.....25......41.......61.......85.......113.......145........181
...9....35.....91.....189......341......559.......855......1241.......1729
..17....97....337.....881.....1921.....3697......6497.....10657......16561
..33...275...1267....4149....10901....24583.....49575.....91817.....159049
..65...793...4825...19721....62281...164305....379793....793585....1531441
.129..2315..18571...94509...358061..1103479...2920695...6880121...14782969
.257..6817..72097..456161..2070241..7444417..22542017..59823937..143046721
.513.20195.281827.2215269.12030821.50431303.174571335.521638217.1387420489
Solutions are determined by the diagonal, extended with x(i,j) = (x(i,i)+x(j,j))/2 * (-1)^(i-j)

Examples

			Some solutions for n=3 k=4
.-2..1.-3..0....0.-1..0..1....4..0..1.-1....2.-1.-1.-2....3.-2..1..0
..1..0..2..1...-1..2.-1..0....0.-4..3.-3...-1..0..2..1...-2..1..0.-1
.-3..2.-4..1....0.-1..0..1....1..3.-2..2...-1..2.-4..1....1..0.-1..2
..0..1..1..2....1..0..1.-2...-1.-3..2.-2...-2..1..1..2....0.-1..2.-3
		

Crossrefs

Column 1 is A000051(n+1)
Column 2 is A007689(n+1)
Column 3 is A074605(n+1)
Column 4 is A074611(n+1)
Column 5 is A074615(n+1)
Column 6 is A074619(n+1)
Column 7 is A074622(n+1)
Column 8 is A074624(n+1)
Row 1 is A001844
Row 2 is A005898
Row 3 is A008514
Row 4 is A008515
Row 5 is A008516
Row 6 is A036085
Row 7 is A036086
Row 8 is A036087

Formula

T(n,k)=k^(n+1)+(k+1)^(n+1)
Showing 1-8 of 8 results.