A036117 a(n) = 2^n mod 11.
1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 5, 10, 9, 7
Offset: 0
Examples
2^6 = 64 = 66 - 2 == -2 mod 11 == 9 mod 11, so a(6) = 9.
References
- H. Cohn, A Second Course in Number Theory, Wiley, NY, 1962, p. 256.
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Primitive roots
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1).
Programs
-
GAP
List([0..70],n->PowerMod(2,n,11)); # Muniru A Asiru, Oct 18 2018
-
Magma
[Modexp(2, n, 11): n in [0..100]]; // G. C. Greubel, Oct 16 2018
-
Maple
i := 5: [ seq(numtheory[primroot](ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
Table[Mod[2^n,11],{n,0,6!}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2010 *)
-
PARI
a(n)=lift(Mod(2,11)^n) \\ Charles R Greathouse IV, Jul 02 2013
-
Sage
[power_mod(2,n,11) for n in range(0, 78)] # Zerinvary Lajos, Nov 03 2009
Formula
a(n) = a(n-1) - a(n-5) + a(n-6). - R. J. Mathar, Apr 13 2010
G.f.: (1+x+2*x^2+4*x^3-3*x^4+6*x^5)/ ((1-x) * (1+x) * (x^4-x^3+x^2-x+1)). - R. J. Mathar, Apr 13 2010
a(n+10) = a(n). - Jon Perry, Oct 30 2014
a(n+5) = 11 - a(n) for all n in Z. - Michael Somos, Oct 17 2018
Comments