cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036122 a(n) = 2^n mod 29.

Original entry on oeis.org

1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27, 25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15, 1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27, 25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15, 1, 2, 4, 8, 16, 3
Offset: 0

Views

Author

Keywords

Comments

The sequence is 28-periodic.

References

  • I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.

Crossrefs

Cf. A000079 (2^n).

Programs

  • GAP
    List([0..65],n->PowerMod(2,n,29)); # Muniru A Asiru, Oct 18 2018
  • Magma
    [Modexp(2, n, 29): n in [0..100]]; // G. C. Greubel, Oct 16 2018
    
  • Maple
    i := pi(29) ; [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
  • Mathematica
    PowerMod[2,Range[0,70],29] (* Harvey P. Dale, Mar 26 2012 *)
  • PARI
    a(n)=lift(Mod(2,29)^n) \\ Charles R Greathouse IV, Mar 22 2016
    
  • Sage
    [power_mod(2,n,29) for n in range(0,62)] # Zerinvary Lajos, Nov 03 2009
    

Formula

a(n) = a(n-1) - a(n-14) + a(n-15). - R. J. Mathar, Feb 06 2011
G.f.: (-1 - x - 2*x^2 - 4*x^3 - 8*x^4 + 13*x^5 - 3*x^6 - 6*x^7 - 12*x^8 + 5*x^9 + 10*x^10 - 9*x^11 + 11*x^12 - 7*x^13 - 15*x^14) / ((x-1)*(x^2+1)*(x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1)). - R. J. Mathar, Feb 06 2011
a(n) = a(n+28). - R. J. Mathar, Jun 04 2016
a(n) = 29 - a(n+14) for all n in Z. - Michael Somos, Oct 17 2018