A036122 a(n) = 2^n mod 29.
1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27, 25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15, 1, 2, 4, 8, 16, 3, 6, 12, 24, 19, 9, 18, 7, 14, 28, 27, 25, 21, 13, 26, 23, 17, 5, 10, 20, 11, 22, 15, 1, 2, 4, 8, 16, 3
Offset: 0
References
- I. M. Vinogradov, Elements of Number Theory, pp. 220 ff.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1).
Crossrefs
Cf. A000079 (2^n).
Programs
-
GAP
List([0..65],n->PowerMod(2,n,29)); # Muniru A Asiru, Oct 18 2018
-
Magma
[Modexp(2, n, 29): n in [0..100]]; // G. C. Greubel, Oct 16 2018
-
Maple
i := pi(29) ; [ seq(primroot(ithprime(i))^j mod ithprime(i),j=0..100) ];
-
Mathematica
PowerMod[2,Range[0,70],29] (* Harvey P. Dale, Mar 26 2012 *)
-
PARI
a(n)=lift(Mod(2,29)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(2,n,29) for n in range(0,62)] # Zerinvary Lajos, Nov 03 2009
Formula
a(n) = a(n-1) - a(n-14) + a(n-15). - R. J. Mathar, Feb 06 2011
G.f.: (-1 - x - 2*x^2 - 4*x^3 - 8*x^4 + 13*x^5 - 3*x^6 - 6*x^7 - 12*x^8 + 5*x^9 + 10*x^10 - 9*x^11 + 11*x^12 - 7*x^13 - 15*x^14) / ((x-1)*(x^2+1)*(x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1)). - R. J. Mathar, Feb 06 2011
a(n) = a(n+28). - R. J. Mathar, Jun 04 2016
a(n) = 29 - a(n+14) for all n in Z. - Michael Somos, Oct 17 2018
Comments