cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201910 Irregular triangle of 5^k mod prime(n).

Original entry on oeis.org

1, 1, 2, 0, 1, 5, 4, 6, 2, 3, 1, 5, 3, 4, 9, 1, 5, 12, 8, 1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1, 5, 6, 11, 17, 9, 7, 16, 4, 1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1, 5, 25, 9, 16, 22, 23, 28, 24, 4
Offset: 1

Views

Author

T. D. Noe, Dec 07 2011

Keywords

Comments

Except for the third row, the first term of each row is 1. Many sequences are in this one: starting at A036121 (mod 23) and A070365 (mod 7).

Examples

			The first 9 rows are:
1
1, 2
0
1, 5, 4, 6, 2, 3
1, 5, 3, 4, 9
1, 5, 12, 8
1, 5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7
1, 5, 6, 11, 17, 9, 7, 16, 4
1, 5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14
		

Crossrefs

Cf. A201908 (2^k), A201909 (3^k), A201911 (7^k).
Cf. A070365 (7), A070367 (11), A070368 (13), A070371 (17), A070373 (19), A036121 (23), A070379 (29), A070384 (37), A070387 (41), A070389 (43), A036127 (47), A036133 (73), A036137 (97), A036139 (103), A036149 (157), A036151 (167), A036156 (193).

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);;
    R:=List([1..Length(P)],n->OrderMod(5,P[n]));;
    Flat(Concatenation([1,1,2,0],List([3..10],n->List([0..R[n]-1],k->PowerMod(5,k,P[n]))))); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    nn = 10; p = 5; t = p^Range[0,Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]

A271378 a(n) = 5^n mod 31.

Original entry on oeis.org

1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25, 1, 5, 25
Offset: 0

Views

Author

Vincenzo Librandi, Apr 06 2016

Keywords

Comments

Period 3: repeat [1, 5, 25].

Crossrefs

Cf. similar sequences of the type 5^n mod p, where p is a prime: A070365 (p=7), A070367 (p=11), A070368 (p=13), A070371 (p=17), A070373 (p=19), A036121 (p=23), A070379 (p=29), this sequence (p=31), A070384 (p=37), A070387 (p=41), A070389 (p=43), A036127 (p=47), A036133 (p=73), A036137 (p=97), A271379 (p=101), A036139 (p=103), A036149 (p=157), A271380 (p=163) A036151 (p=167), A036156 (p=193).

Programs

  • Magma
    [Modexp(5, n, 31): n in [0..100]];
    
  • Magma
    &cat [[1,5,25]^^30]; // Bruno Berselli, Apr 07 2016
    
  • Maple
    seq(op([1, 5, 25]), n=0..50); # Wesley Ivan Hurt, Jun 30 2016
  • Mathematica
    PowerMod[5, Range[0, 100], 31]
  • PARI
    x='x+O('x^99); Vec((1+5*x+25*x^2)/(1-x^3)) \\ Altug Alkan, Apr 06 2016

Formula

G.f.: (1+5*x+25*x^2)/(1-x^3).
a(n) = a(n-3) for n>2.
a(n) = 5^(n mod 3).
a(n) = (31 - 28*cos(2*n*Pi/3) - 20*sqrt(3)*sin(2*n*Pi/3))/3. - Wesley Ivan Hurt, Jun 30 2016

Extensions

Edited by Bruno Berselli, Apr 07 2016
Showing 1-2 of 2 results.