A036353 Square pentagonal numbers.
0, 1, 9801, 94109401, 903638458801, 8676736387298001, 83314021887196947001, 799981229484128697805801, 7681419682192581869134354401, 73756990988431941623299373152801, 708214619789503821274338711878841001, 6800276705461824703444258688161258139001
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..252
- Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7.
- Byungchan Kim, Eunmi Kim, and Jeremy Lovejoy, On weighted overpartitions related to some q-series in Ramanujan's lost notebook, Int'l J. Number Theory (2021). Also at Université de Paris (France, 2020).
- Eric Weisstein's World of Mathematics, Pentagonal Square Number
- Index entries for linear recurrences with constant coefficients, signature (9603,-9603,1).
Programs
-
Mathematica
Table[Floor[1/96 ( Sqrt[2] + Sqrt[3] ) ^ ( 8*n - 4 ) ] , {n, 0, 9}] (* Ant King, Nov 06 2011 *) LinearRecurrence[{9603,-9603,1},{0,1,9801,94109401},20] (* Harvey P. Dale, Apr 14 2019 *)
-
PARI
for(n=0,10^9,g=(n*(3*n-1)/2); if(issquare(g),print(g)))
-
PARI
concat(0, Vec(x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)) + O(x^20))) \\ Colin Barker, Jun 24 2015
Formula
a(n) = 9602*a(n-1) - a(n-2) + 200; g.f.: x*(1+198*x+x^2)/((1-x)*(1-9602*x+x^2)). - Warut Roonguthai, Jan 05 2001
a(n+1) = 4801*a(n)+100+980*(24*a(n)^2+a(n))^(1/2). - Richard Choulet, Sep 21 2007
From Ant King, Nov 06 2011: (Start)
a(n) = floor(1/96*(sqrt(2) + sqrt(3))^(8*n-4)).
a(n) = 9603*a(n-1) - 9603*a(n-2) + a(n-3).
(End)
Extensions
More terms from Eric W. Weisstein
Comments