cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036766 Number of ordered rooted trees with n non-root nodes and all outdegrees <= four.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 125, 393, 1265, 4147, 13798, 46476, 158170, 543050, 1878670, 6542330, 22915999, 80682987, 285378270, 1013564805, 3613262795, 12924536005, 46373266470, 166856922125, 601928551824, 2176616383346, 7888184659826, 28645799759632, 104224861693855
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of Dyck n-paths that avoid UUUUU=(U^5). For example, a(5)=41 counts all 42 Dyck 5-paths except (U^5)(D^5). - David Callan, Sep 25 2006
Number of n-leaf binary trees that do not contain (()(()(()(()(()()))))) as a subtree. - Eric Rowland, Jun 17 2009
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 4 children. - Geoffrey Critzer, Jan 05 2013

Crossrefs

The sequence of sequences A000007 (0^n), A000012 (1's), A001006 (Motzkin), A036765, A036766, ... tends to A000108 (Catalan).
Column k=4 of A288942.

Programs

  • Maple
    r := 4; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1), j=0..floor((n-1)/(r+1))), n=1..30) ];
  • Mathematica
    nn=20;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[Series[0==f[x]-x -x f[x]-x f[x]^2-x f[x]^3-x f[x]^4,{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Jan 05 2013 *)
    Table[1/(n+1)*Sum[(-1)^j*Binomial[n+1,j]*Binomial[2*n-5*j,n],{j,0,Floor[n/5]}],{n,0,20}] (* Vaclav Kotesovec, Mar 13 2014 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 4];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/polcyclo(5)+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

G.f.: A(x) satisfies A(x) = 1+x*A(x)+x^2*A(x)^2+x^3*A(x)^3+x^4*A(x)^4. - Vladimir Kruchinin, Feb 22 2011
a(n) ~ sqrt(s/(1 + 3*r*s + 6*r^2*s^2)) / (2*n^(3/2)*sqrt(Pi)*r^(n+1)), where r = 0.2607944621478111633... and s = 2.176953284456253116... are roots of the system of equations r + 2*r^2*s + 3*r^3*s^2 + 4*r^4*s^3 = 1, 1 + r*s + r^2*s^2 + r^3*s^3 + r^4*s^4 = s. - Vaclav Kotesovec, Mar 13 2014
Conjecture: -3*(3*n+2)*(133*n-347)*(3*n+4)*(n+1)*a(n) +(111457*n^4-364730*n^3+228995*n^2+19310*n-33312)*a(n-1) +5*(-68503*n^4+34661
8*n^3-590627*n^2+397748*n-90564)*a(n-2) -25*(n-2)*(1933*n^3-9435*n^2+14354*n-7518)*a(n-3) -125*(n-2)*(n-3)*(1333*n^2-4384*n+2718)*
a(n-4) -625*(733*n-400)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 04 2015

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017