cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A036770 Number of labeled rooted trees with a degree constraint: (2*n)!/(2^n) * C(2*n+1, n).

Original entry on oeis.org

1, 3, 60, 3150, 317520, 52390800, 12843230400, 4382752374000, 1986847742880000, 1155153277710432000, 838011196011749760000, 742058914068404412480000, 787724078011075453248000000, 987468397792455300321600000000, 1443283810213452666950050560000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of rooted labeled strictly binary trees (each vertex has exactly two children or none) on 2*n + 1 vertices. - Geoffrey Critzer, Nov 13 2011

Crossrefs

Programs

  • Magma
    [Factorial(2*n)/(2^n) * Binomial(2*n+1, n): n in [0..15]]; // Vincenzo Librandi, Jan 29 2020
  • Maple
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},labeled]: seq(combstruct[count](spec,size=n)
  • Mathematica
    Range[0, 19]! CoefficientList[Series[(1 - (1 - 2 x^2)^(1/2))/x, {x, 0, 20}], x] (* Geoffrey Critzer, Nov 13 2011 *)

Formula

Recurrence (with interpolated zeros): Define (b(n): n >= 0) by b(2*m+1) = a(m) and b(2*m) = 0 for m >= 0. Then the sequence (b(n): n >= 0) satisfies the recurrence (-2*n^3 - 6*n^2 - 4*n)*b(n) + (n + 3)*b(n+2) = 0 for n >= 0 with b(0) = 0 and b(1) = 1. [Corrected by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros: G(x) = Sum_{n >= 0} b(n)*x^n/n! = Sum_{m >= 0} a(m)*x^(2*m + 1)/(2*m + 1)! = 1/x * (1 - (1 - 2*x^2)^(1/2)) for 0 < |x| < 1/sqrt(2). [Edited by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros satisfies G(x)= x*(1 + G(x)^2/2). - Geoffrey Critzer, Nov 13 2011
D-finite with recurrence (with no interpolated zeros): -2*a(n)*(n + 1)*(2*n + 1)*(2*n + 3) + (n + 2)*a(n+1) = 0 with a(0) = 1. - Petros Hadjicostas, Jun 08 2019
G.f.: 4F1(1,1,1/2,3/2;2;8*x). - R. J. Mathar, Jan 28 2020

A036771 Number of labeled rooted trees with a degree constraint: ((3*n)!/(6^n)) * binomial(3*n + 1, n).

Original entry on oeis.org

1, 4, 420, 201600, 264264000, 734557824000, 3723191087616000, 31125877492469760000, 399532678960326912000000, 7462849882264211635200000000, 194563959280510261541299200000000, 6847568575944052279580806348800000000, 316573366618757452963440048714547200000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of labeled rooted unordered trees on 3n+1 nodes such that each node has zero or three children. - Geoffrey Critzer, Mar 14 2013

Examples

			E.g.f. (with interpolated zeros): 1*x/1! + 4*x^4/4! + 420*x^7/7! + 201600*x^10/10! + 264264000*x^13/13! + 734557824000*x^16/16! + 3723191087616000*x^19/19! + ... = x + 1/6*x^4 + 1/12*x^7 + 1/18*x^10 + 55/1296*x^13 + 91/2592*x^16 + 119/3888*x^19 + ... - _Petros Hadjicostas_, Jun 07 2019
		

Crossrefs

Programs

  • Maple
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    A := proc(x) 2*sqrt(2)*cos(1/3*arccos(-3/2*x*sqrt(1/2*x)) - 2/3*Pi)/sqrt(x); end proc;
    series(A(x), x = 0, 80);  # Petros Hadjicostas, Jun 07 2019
  • Mathematica
    nn=34;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0=Series[f[x]-x (1+f[x]^3/3!),{x,0,nn}],x];Table[a[n],{n,1,nn,3}]/.s  (* Geoffrey Critzer, Mar 14 2013 *)
  • Python
    from math import factorial, comb
    def A036771(n): return factorial(3*n)*comb(3*n+1,n)//3**n>>n  # Chai Wah Wu, Nov 28 2023

Formula

E.g.f. (with interpolated zeros): -(1/2)/x * ((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3) - 1/((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3) - (1/2)*I*3^(1/2) * (1/x * ((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3) - 2/((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3)).
Recurrence (with interpolated zeros): Define sequence (b(n): n >= 0) by b(3*n + 1) = a(n) for n >= 0 and b(n) = 0 otherwise. Then it satisfies the recurrence (-9*n^4 - 45*n^3 - 63*n^2 - 27*n) * b(n) + (8*n + 28) * b(n+3) = 0 for n >= 0 with b(0) = 0, b(1) = 1, and b(2) = 0. [Corrected by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros satisfies: A(x) = x*(1 + A(x)^3/3!). - Geoffrey Critzer, Mar 14 2013
From Petros Hadjicostas, Jun 07 2019: (Start)
In other words, if A(x) = Sum_{n >= 0} b(n)*x^n/n! = Sum_{m >= 0} a(m)*x^(3*m+1)/(3*m+1)!, then A(x) = x*(1 + A(x)^3/3!).
E.g.f. of (b(n): n >= 1) according to the link for ECS 47 above: Let f(x) = ((-3*x + sqrt((9*x^3 - 8)/x)) * x^2)^(1/3). Then the e.g.f. of (b(n): n >= 1), which includes interpolated zeros, is -f(x)/(2*x) - 1/f(x) - (I*sqrt(3)/2)*(f(x)/x - 2/f(x)). (It is not clear whether it is correct or useful.)
E.g.f. using the solution of a cubic in terms of trigonometric functions: A(x) = (2*sqrt(2)/sqrt(|x|)) * cos( (1/3) * arccos((-3*|x|/2) * sqrt(|x|/2)) - 2*Pi/3 ) for 0 < |x| < 2/9^(1/3). (We have lim_{x -> 0} A(x) = 0.) (End)
Recurrence without interpolated zeros: -3 * (3*n + 4) * (3*n + 1) * (3*n + 2)^2 * a(n) + 4 * (2*n + 3) * a(n + 1) = 0 for n >= 0 with a(0) = 1. - Petros Hadjicostas, Jun 08 2019

A036772 Number of labeled rooted trees with a degree constraint: ((4*n)!/(24^n)) * binomial(4*n+1, n).

Original entry on oeis.org

1, 5, 2520, 9909900, 150089940000, 6217438242015000, 574985352122181000000, 103753754577643425255000000, 33189544956070738228953960000000, 17517292900368819935211385551000000000, 14427024664929016470240101675459976000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4n)!/24^n Binomial[4n+1,n],{n,0,10}] (* Harvey P. Dale, Aug 10 2011 *)

Formula

From Petros Hadjicostas, Jun 08 2019: (Start)
Recurrence (with no interpolated zeros): -8 * (4*n + 1) * (4*n + 3)^2 * (2*n + 1)^2 * (4*n + 5) * a(n) + (81*n^2 + 162*n + 72) * a(n + 1) = 0 for n >= 0 with a(0) = 1.
E.g.f. (with interpolated zeros): Let G(x) = Sum_{n >= 0} a(n)*x^(4*n + 1)/(4*n + 1)!. Then the e.g.f. satisfies G(x) = x * (1 + G(x)^4/4!).
(End)
Showing 1-3 of 3 results.