cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A036771 Number of labeled rooted trees with a degree constraint: ((3*n)!/(6^n)) * binomial(3*n + 1, n).

Original entry on oeis.org

1, 4, 420, 201600, 264264000, 734557824000, 3723191087616000, 31125877492469760000, 399532678960326912000000, 7462849882264211635200000000, 194563959280510261541299200000000, 6847568575944052279580806348800000000, 316573366618757452963440048714547200000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of labeled rooted unordered trees on 3n+1 nodes such that each node has zero or three children. - Geoffrey Critzer, Mar 14 2013

Examples

			E.g.f. (with interpolated zeros): 1*x/1! + 4*x^4/4! + 420*x^7/7! + 201600*x^10/10! + 264264000*x^13/13! + 734557824000*x^16/16! + 3723191087616000*x^19/19! + ... = x + 1/6*x^4 + 1/12*x^7 + 1/18*x^10 + 55/1296*x^13 + 91/2592*x^16 + 119/3888*x^19 + ... - _Petros Hadjicostas_, Jun 07 2019
		

Crossrefs

Programs

  • Maple
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=3)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    A := proc(x) 2*sqrt(2)*cos(1/3*arccos(-3/2*x*sqrt(1/2*x)) - 2/3*Pi)/sqrt(x); end proc;
    series(A(x), x = 0, 80);  # Petros Hadjicostas, Jun 07 2019
  • Mathematica
    nn=34;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0=Series[f[x]-x (1+f[x]^3/3!),{x,0,nn}],x];Table[a[n],{n,1,nn,3}]/.s  (* Geoffrey Critzer, Mar 14 2013 *)
  • Python
    from math import factorial, comb
    def A036771(n): return factorial(3*n)*comb(3*n+1,n)//3**n>>n  # Chai Wah Wu, Nov 28 2023

Formula

E.g.f. (with interpolated zeros): -(1/2)/x * ((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3) - 1/((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3) - (1/2)*I*3^(1/2) * (1/x * ((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3) - 2/((-3*x + ((-8 + 9*x^3) / x)^(1/2)) * x^2)^(1/3)).
Recurrence (with interpolated zeros): Define sequence (b(n): n >= 0) by b(3*n + 1) = a(n) for n >= 0 and b(n) = 0 otherwise. Then it satisfies the recurrence (-9*n^4 - 45*n^3 - 63*n^2 - 27*n) * b(n) + (8*n + 28) * b(n+3) = 0 for n >= 0 with b(0) = 0, b(1) = 1, and b(2) = 0. [Corrected by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros satisfies: A(x) = x*(1 + A(x)^3/3!). - Geoffrey Critzer, Mar 14 2013
From Petros Hadjicostas, Jun 07 2019: (Start)
In other words, if A(x) = Sum_{n >= 0} b(n)*x^n/n! = Sum_{m >= 0} a(m)*x^(3*m+1)/(3*m+1)!, then A(x) = x*(1 + A(x)^3/3!).
E.g.f. of (b(n): n >= 1) according to the link for ECS 47 above: Let f(x) = ((-3*x + sqrt((9*x^3 - 8)/x)) * x^2)^(1/3). Then the e.g.f. of (b(n): n >= 1), which includes interpolated zeros, is -f(x)/(2*x) - 1/f(x) - (I*sqrt(3)/2)*(f(x)/x - 2/f(x)). (It is not clear whether it is correct or useful.)
E.g.f. using the solution of a cubic in terms of trigonometric functions: A(x) = (2*sqrt(2)/sqrt(|x|)) * cos( (1/3) * arccos((-3*|x|/2) * sqrt(|x|/2)) - 2*Pi/3 ) for 0 < |x| < 2/9^(1/3). (We have lim_{x -> 0} A(x) = 0.) (End)
Recurrence without interpolated zeros: -3 * (3*n + 4) * (3*n + 1) * (3*n + 2)^2 * a(n) + 4 * (2*n + 3) * a(n + 1) = 0 for n >= 0 with a(0) = 1. - Petros Hadjicostas, Jun 08 2019

A052510 Number of labeled planar binary trees with 2n-1 elements (external nodes or internal nodes).

Original entry on oeis.org

1, 6, 240, 25200, 5080320, 1676505600, 821966745600, 560992303872000, 508633022177280000, 591438478187741184000, 858123464716031754240000, 1519736656012092236759040000, 3226517823533365056503808000000, 8089341114715793820234547200000000
Offset: 1

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals central terms of A174449. - G. C. Greubel, Nov 29 2021

Crossrefs

Programs

  • Magma
    [Factorial(2*n-1)*Catalan(n-1): n in [1..15]]; // G. C. Greubel, Nov 29 2021
  • Maple
    spec := [S, {S=Union(Z, Prod(Z, S, S))}, labeled]:
    seq(combstruct[count](spec, size=2*n-1), n=1..14);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n,
          4*(n-1)*(2*n-3)*(2*n-1)*a(n-1)/n)
        end:
    seq(a(n), n=1..22);  # Alois P. Heinz, Dec 03 2019
  • Mathematica
    nn=20;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0==Series[f[x]-x(1+f[x]^2),{x,0,nn}],x];Select[Flatten[Table[a[n],{n,0,nn}]/.s],#>0&]  (* Geoffrey Critzer, Mar 23 2013 *)
    RecurrenceTable[{a[1]==1, n*a[n]==(4*(n-1)*(2*n-3)*(2*n-1))*a[n-1]}, a[n], {n,1,22}] (* Georg Fischer, Dec 03 2019 following Alois P. Heinz *)
    a[n_]:= CatalanNumber[n-1] Gamma[2n]; Array[a,14] (* Peter Luschny, Dec 03 2019 *)
  • PARI
    a=vector(28);print1(a[1]=1,", ");forstep(k=1,#a-2,2,print1(a[k+2]=4*a[k]*(k^3+3*k^2+2*k)/(k+3),", ")) \\ Hugo Pfoertner, Dec 04 2019
    
  • Sage
    [factorial(2*n-1)*catalan_number(n-1) for n in (1..15)] # G. C. Greubel, Nov 29 2021
    

Formula

E.g.f.: ((1/2)/x)*(1-sqrt(1-4*x^2)). [With interspersed zeros.]
Recurrence: b(1)=1, b(2)=0, b(n)=(4*n^3-12*n^2+8*n)*b(n-2)/(n+1) and a(n) = b(2*n-1).
a(n) = (2n-1)/n * ( (2(n-1))! / (n-1)! )^2. - Travis Kowalski (kowalski(AT)euclid.UCSD.Edu), Dec 15 2000
i*sin(arcsec(2*x)) = -1/(2*x) + x + 6*x^3/3! + 240*x^5/5! + 25200*x^7/7! + ...
a(n) = 2^(n-1) * A036770(n).
a(n) = (2*n-1)! * A000108(n-1). - Michail Stamatakis, Jan 24 2019
Sum_{n>=1} 1/a(n) = 1 + StruveL(0, 1/2)*Pi/8 + StruveL(1, 1/2)*Pi/4, where StruveL is the modified Struve function. - Amiram Eldar, Dec 04 2022

Extensions

Edited by Georg Fischer, Dec 03 2019

A093049 n-1 minus exponent of 2 in n, a(0) = 0.

Original entry on oeis.org

0, 0, 0, 2, 1, 4, 4, 6, 4, 8, 8, 10, 9, 12, 12, 14, 11, 16, 16, 18, 17, 20, 20, 22, 20, 24, 24, 26, 25, 28, 28, 30, 26, 32, 32, 34, 33, 36, 36, 38, 36, 40, 40, 42, 41, 44, 44, 46, 43, 48, 48, 50, 49, 52, 52, 54, 52, 56, 56, 58, 57, 60, 60, 62, 57, 64, 64, 66, 65, 68
Offset: 0

Views

Author

Ralf Stephan, Mar 16 2004

Keywords

Examples

			G.f. = 2*x^3 + x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 4*x^8 + 8*x^9 + 8*x^10 + ... - _Michael Somos_, Jan 25 2020
		

Crossrefs

a(n) = n - A007814(n) - 1 = A093048(n) - 1, n>0.
a(n) is the exponent of 2 in A001761(n+1), A002105(n), A002682(n-1), A006963(n), A036770(n-1), A059837(n), A084623(n), |A003707(n)|, |A011859(n)|.

Programs

  • Mathematica
    a[ n_] := If[ n == 0, 0, n - 1 - IntegerExponent[n, 2]]; (* Michael Somos, Jan 25 2020 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+n/2-1,n-1))
    
  • PARI
    {a(n) = if( n, n - 1 - valuation(n, 2))}; /* Michael Somos, Jan 25 2020 */
    
  • Python
    def A093049(n): return n-1-(~n& n-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022

Formula

Recurrence: a(2n) = a(n) + n - 1, a(2n+1) = 2n.
G.f.: sum(k>=0, t^3(t+2)/(1-t^2)^2, t=x^2^k).

A036772 Number of labeled rooted trees with a degree constraint: ((4*n)!/(24^n)) * binomial(4*n+1, n).

Original entry on oeis.org

1, 5, 2520, 9909900, 150089940000, 6217438242015000, 574985352122181000000, 103753754577643425255000000, 33189544956070738228953960000000, 17517292900368819935211385551000000000, 14427024664929016470240101675459976000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4n)!/24^n Binomial[4n+1,n],{n,0,10}] (* Harvey P. Dale, Aug 10 2011 *)

Formula

From Petros Hadjicostas, Jun 08 2019: (Start)
Recurrence (with no interpolated zeros): -8 * (4*n + 1) * (4*n + 3)^2 * (2*n + 1)^2 * (4*n + 5) * a(n) + (81*n^2 + 162*n + 72) * a(n + 1) = 0 for n >= 0 with a(0) = 1.
E.g.f. (with interpolated zeros): Let G(x) = Sum_{n >= 0} a(n)*x^(4*n + 1)/(4*n + 1)!. Then the e.g.f. satisfies G(x) = x * (1 + G(x)^4/4!).
(End)

A036773 Number of labeled rooted trees with a degree constraint: ((5*n)!/(120^n)) * C(5*n+1, n).

Original entry on oeis.org

1, 6, 13860, 423783360, 70220478968640, 41004669682770393600, 65405789473547026656472320, 240729724316568938710767014707200, 1813083536072533851678174232377806438400, 25541737277107694920826740625991927645705830400
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

E.g.f. with interpolated zeros: Let G(x) = Sum_{n >= 0} a(n)*x^(5*n + 1)/(5*n + 1)!. Then this e.g.f. satisfies the equation G(x) = x*(1 + G(x)^5/5!). - Petros Hadjicostas, Jun 08 2019

A126934 Define an array by d(m, 0) = 1, d(m, 1) = m; d(m, k) = (m - k + 1) d(m+1, k-1) - (k-1) (m+1) d(m+2, k-2). Sequence gives d(0,2n).

Original entry on oeis.org

1, -2, 36, -1800, 176400, -28576800, 6915585600, -2337467932800, 1051860569760000, -607975409321280000, 438958245529964160000, -387161172557428389120000, 409616520565759235688960000, -512020650707199044611200000000, 746526108731096207043129600000000, -1255656914885703820246543987200000000
Offset: 0

Views

Author

Vincent v.d. Noort, Mar 21 2007

Keywords

Comments

|a(n)| is the number of functions f:{1,2,...,2n}->{1,2,...,2n} such that each element has either 0 or 2 preimages. That is, |(f^-1)(x)| is in {0,2} for all x in {1,2,...,2n}. - Geoffrey Critzer, Feb 24 2012.

References

  • V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

Crossrefs

See A105937 for the full array.
See also A127080.

Programs

  • Magma
    function T(n,k)
      if k eq 0 then return 1;
      elif k eq 1 then return n;
      else return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2);
      end if; return T; end function;
    [T(0,2*n): n in [0..15]]; // G. C. Greubel, Jan 28 2020
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then 1
        elif k=1 then n
        else (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
          fi; end:
    seq(T(0, 2*k), n=0..15); # G. C. Greubel, Jan 28 2020
  • Mathematica
    nn=40;b=(1-(1-2x^2)^(1/2))/x;Select[Range[0,nn]!CoefficientList[Series[1/(1-x b),{x,0,nn}],x],#>0&]*Table[(-1)^(n),{n,0,nn/2}]  (* Geoffrey Critzer, Feb 24 2012 *)
    T[n_, k_]:= T[n, k]= If[k==0, 1, If[k==1, n, (n-k+1)*T[n+1, k-1] - (k-1)*(n+1)* T[n+2, k-2]]]; Table[T[0, 2*n], {n,0,15}] (* G. C. Greubel, Jan 28 2020 *)
  • PARI
    T(n,k) = if(k==0, 1, if(k==1, n, (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2) ));
    vector(15, n, T(0,2*(n-1)) ) \\ G. C. Greubel, Jan 28 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return 1
        elif (k==1): return n
        else: return (n-k+1)*T(n+1, k-1) - (k-1)*(n+1)*T(n+2, k-2)
    [T(0, 2*n) for n in (0..15)] # G. C. Greubel, Jan 28 2020

Formula

a(n) = (-1)^n * A001147(n) * A001813(n). - N. J. A. Sloane, Mar 21 2007
E.g.f. for positive values with interpolated zeros:
(1-2*x^2)^(-1/2) which is exp(log(1/(1-x*G(x)))) where
G(x) is the e.g.f. for A036770. - Geoffrey Critzer, Feb 24 2012
a(n) = (-8)^n * gamma(n + 1/2)^2 / Pi. - Daniel Suteu, Jan 06 2017

A200850 The number of forests of labeled rooted strictly binary trees (each vertex has exactly two children or none) on n nodes.

Original entry on oeis.org

1, 1, 1, 4, 13, 91, 511, 5146, 41329, 544573, 5704381, 93001096, 1203040741, 23391560479, 360416247283, 8142893840446, 145661102170081, 3750604005834361, 76415186203927129, 2209120481052933868, 50510327090854792861, 1620053085929867956291
Offset: 0

Views

Author

Geoffrey Critzer, Nov 23 2011

Keywords

Crossrefs

Cf. A036770.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, add((n-1)!/(n-1-2*j)! *binomial(2*j+1, j)/
                           (2^j) *a(n-1-2*j), j=0..(n-1)/2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 23 2011
  • Mathematica
    Range[0,19]! CoefficientList[Series[Exp[(1-(1-2x^2)^(1/2))/x],{x,0,19}],x]

Formula

E.g.f.: exp(A(x)) where A(x) is the e.g.f. for A036770.
Recurrence: 2*a(n) = -(n-2)*(n+1)*a(n-1) + 2*(n-1)*(2*n-3)*a(n-2) + 2*(n-3)*(n-2)*(n-1)^2*a(n-3). - Vaclav Kotesovec, Aug 14 2013
a(n) ~ 2^(n/2+1/2)*n^(n-1)*exp(-n-sqrt(2))*(exp(2*sqrt(2))-(-1)^n). - Vaclav Kotesovec, Aug 14 2013

A052505 Number of labeled 3-constrained functional graphs.

Original entry on oeis.org

1, 3, 300, 141120, 182952000, 505008504000, 2547446533632000, 21222189199411200000, 271682221693022300160000, 5064076705822143609600000000, 131801391770668241689267200000000, 4632178742550388306775251353600000000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of functions f:{1,2,...,3n}->{1,2,...,3n} such that the preimage of every element has cardinality 0 or 3. - Geoffrey Critzer, Mar 14 2017

Examples

			a(1) = 3 because there are 3 functions from {1,2,3} into {1,2,3} in which the preimage of every element in {1,2,3} is empty or contains 3 elements, namely the 3 constant functions.
		

Crossrefs

Cf. A036770.

Programs

  • Maple
    spec := [S, {g=Union(Z, Prod(Z, Set(g, card=3))), S=Set(Cycle(Prod(Z, Set(g, card=2))))}, labeled]: seq(combstruct[count](spec, size=3*n), n=0..20);
  • Mathematica
    nn = 33; A[z]:= Sum[a[n] z^n, {n, 0, nn}];
    sol = SolveAlways[0==Series[A[z] - z*(1+A[z]^3/6), {z,0,nn}], z];
    Select[Range[0, nn]!*Flatten[CoefficientList[Series[1/(1-zA[z]^2/2)/. sol, {z, 0, nn}], z]], # > 0 &] (* Geoffrey Critzer, Mar 14 2017 *)
    Select[RecurrenceTable[{(-9*n^4-54*n^3-117*n^2-108*n-36)*a[n]+(8*n+12)*a[n+3]==0, a[0]==1, a[1]==0, a[2]==0}, a, {n,0,33}], # > 0 &] (* Georg Fischer, Dec 06 2019 *)

Formula

E.g.f.: -2/(-2+x*RootOf(-6*_Z+6*x+x*_Z^3)^2).
Recurrence: {a(1)=0, (-9*n^4-54*n^3-117*n^2-108*n-36)*a(n)+(8*n+12)*a(n+3), a(2)=0, a(4)=0, a(3)=3, a(5)=0}. [interpolated with 0,0]

Extensions

a(7)-a(11) from Geoffrey Critzer, Mar 14 2017
Showing 1-8 of 8 results.