cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A101921 a(2n) = a(n) + 2n - 1, a(2n+1) = 4n.

Original entry on oeis.org

0, 1, 4, 4, 8, 9, 12, 11, 16, 17, 20, 20, 24, 25, 28, 26, 32, 33, 36, 36, 40, 41, 44, 43, 48, 49, 52, 52, 56, 57, 60, 57, 64, 65, 68, 68, 72, 73, 76, 75, 80, 81, 84, 84, 88, 89, 92, 90, 96, 97, 100, 100, 104, 105, 108, 107, 112, 113, 116, 116, 120, 121, 124, 120, 128
Offset: 1

Views

Author

Ralf Stephan, Dec 21 2004

Keywords

Comments

Exponent of 2 in tangent numbers A000182.
Also, exponent of 2 in the sequences A008775, A009670, A009764, A009798, A012227, A024236, A024277, A024299, A052510.
Also, exponent of 2 in 4^(n-1)/n. [David Brink, Aug 08 2013]

Examples

			G.f. = x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 9*x^6 + 12*x^7 + 11*x^8 + 16*x^9 + 17*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= If[n<1, 0, 2n -2 - IntegerExponent[n, 2]]; (* Michael Somos, Mar 02 2014 *)
  • PARI
    a(n)=valuation(4^(n-1)/n,2); \\ Joerg Arndt, Aug 13 2013
    
  • Python
    def A101921(n): return (n-1<<1)-(~n & n-1).bit_length() # Chai Wah Wu, Apr 14 2023
  • Sage
    [2*n-2 -valuation(n,2) for n in (1..100)] # G. C. Greubel, Nov 29 2021
    

Formula

a(n) = 2n - 2 - A007814(n).
a(n) = A007814(A000182(n)).
G.f.: Sum_{k>=0} t^2*(1+4*t+t^2)/(1-t^2)^2 where t=x^2^k.

A036770 Number of labeled rooted trees with a degree constraint: (2*n)!/(2^n) * C(2*n+1, n).

Original entry on oeis.org

1, 3, 60, 3150, 317520, 52390800, 12843230400, 4382752374000, 1986847742880000, 1155153277710432000, 838011196011749760000, 742058914068404412480000, 787724078011075453248000000, 987468397792455300321600000000, 1443283810213452666950050560000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of rooted labeled strictly binary trees (each vertex has exactly two children or none) on 2*n + 1 vertices. - Geoffrey Critzer, Nov 13 2011

Crossrefs

Programs

  • Magma
    [Factorial(2*n)/(2^n) * Binomial(2*n+1, n): n in [0..15]]; // Vincenzo Librandi, Jan 29 2020
  • Maple
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},labeled]: seq(combstruct[count](spec,size=n)
  • Mathematica
    Range[0, 19]! CoefficientList[Series[(1 - (1 - 2 x^2)^(1/2))/x, {x, 0, 20}], x] (* Geoffrey Critzer, Nov 13 2011 *)

Formula

Recurrence (with interpolated zeros): Define (b(n): n >= 0) by b(2*m+1) = a(m) and b(2*m) = 0 for m >= 0. Then the sequence (b(n): n >= 0) satisfies the recurrence (-2*n^3 - 6*n^2 - 4*n)*b(n) + (n + 3)*b(n+2) = 0 for n >= 0 with b(0) = 0 and b(1) = 1. [Corrected by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros: G(x) = Sum_{n >= 0} b(n)*x^n/n! = Sum_{m >= 0} a(m)*x^(2*m + 1)/(2*m + 1)! = 1/x * (1 - (1 - 2*x^2)^(1/2)) for 0 < |x| < 1/sqrt(2). [Edited by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros satisfies G(x)= x*(1 + G(x)^2/2). - Geoffrey Critzer, Nov 13 2011
D-finite with recurrence (with no interpolated zeros): -2*a(n)*(n + 1)*(2*n + 1)*(2*n + 3) + (n + 2)*a(n+1) = 0 with a(0) = 1. - Petros Hadjicostas, Jun 08 2019
G.f.: 4F1(1,1,1/2,3/2;2;8*x). - R. J. Mathar, Jan 28 2020

A174449 Triangle T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 240, 20, 1, 1, 30, 600, 600, 30, 1, 1, 42, 1260, 25200, 1260, 42, 1, 1, 56, 2352, 70560, 70560, 2352, 56, 1, 1, 72, 4032, 169344, 5080320, 169344, 4032, 72, 1, 1, 90, 6480, 362880, 15240960, 15240960, 362880, 6480, 90, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 20 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   6,    1;
  1,  12,   12,      1;
  1,  20,  240,     20,        1;
  1,  30,  600,    600,       30,          1;
  1,  42, 1260,  25200,     1260,         42,        1;
  1,  56, 2352,  70560,    70560,       2352,       56,      1;
  1,  72, 4032, 169344,  5080320,     169344,     4032,     72,    1;
  1,  90, 6480, 362880, 15240960,   15240960,   362880,   6480,   90,   1;
  1, 110, 9900, 712800, 39916800, 1676505600, 39916800, 712800, 9900, 110,  1;
		

Crossrefs

Cf. this sequence (q=1), A174450 (q=2), A174451 (q=3).
Cf. A052510.

Programs

  • Magma
    F:= Factorial; // T = A174449
    T:= func< n,k,q | Floor(n/2) gt k-1 select F(n)*F(n+1)*q^k/(F(n-k)*F(n-k+1)) else F(n)*F(n+1)*q^(n-k)/(F(k)*F(k+1)) >;
    [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 29 2021
    
  • Mathematica
    T[n_, k_, q_]:= If[Floor[n/2]>k-1, n!*(n+1)!*q^k/((n-k)!*(n-k+1)!), n!*(n+1)!*q^(n-k)/(k!*(k+1)!)];
    Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    f=factorial
    def A174449(n,k,q):
        if ((n//2)>k-1): return f(n)*f(n+1)*q^k/(f(n-k)*f(n-k+1))
        else: return f(n)*f(n+1)*q^(n-k)/(f(k)*f(k+1))
    flatten([[A174449(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 29 2021

Formula

T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 1.
T(n, n-k, q) = T(n, k, q).
From G. C. Greubel, Nov 29 2021: (Start)
T(2*n, n, 1) = A052510(n+1).
T(2*n, n, q) = q^n*(2*n+1)!*Catalan(n) for q = 1.
T(n, k, q) = binomial(n, k)*binomial(n+1, k+1) * ( k!*(k+1)!*q^k/(n-k+1) if (floor(n/2) >= k), otherwise ((n-k)!)^2*q^(n-k) ), for q = 1. (End)

Extensions

Edited by G. C. Greubel, Nov 29 2021

A329965 a(n) = ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2.

Original entry on oeis.org

1, 2, 6, 72, 240, 7200, 25200, 1411200, 5080320, 457228800, 1676505600, 221298739200, 821966745600, 149597947699200, 560992303872000, 134638152929280000, 508633022177280000, 155641704786247680000, 591438478187741184000, 224746621711341649920000
Offset: 0

Views

Author

Peter Luschny, Dec 04 2019

Keywords

Crossrefs

Programs

  • Maple
    A329965 := n -> ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2:
    seq(A329965(n), n=0..19);
  • Mathematica
    ser := Series[(1 - Sqrt[1 - 4 x^2] - 4 x^2 (1 - x - Sqrt[1 - 4 x^2]))/(2 x^2 (1 - 4 x^2)^(3/2)), {x, 0, 22}]; Table[n! Coefficient[ser, x, n], {n, 0, 20}]
    Table[(1+n)Floor[1+n/2](n!/Floor[1+n/2]!)^2,{n,0,30}] (* Harvey P. Dale, Oct 01 2023 *)
  • Python
    from fractions import Fraction
    def A329965():
        x, n = 1, Fraction(1)
        while True:
            yield int(x)
            m = n if n % 2 else 4/(n+2)
            n += 1
            x *= m * n
    a = A329965(); [next(a) for i in range(36)]

Formula

a(n) = n!*A212303(n+1).
a(n) = (n+1)!*A057977(n).
a(n) = A093005(n+1)*A262033(n)^2.
a(n) = A093005(n+1)*A329964(n).
a(2*n) = A052510(n) (n >= 0).
a(2*n+1) = A123072(n+1) (n >= 0).
a(n) = n! [x^n] (1 - sqrt(1 - 4*x^2) - 4*x^2*(1 - x - sqrt(1 - 4*x^2)))/(2*x^2*(1 - 4*x^2)^(3/2)).
Showing 1-4 of 4 results.