A101921
a(2n) = a(n) + 2n - 1, a(2n+1) = 4n.
Original entry on oeis.org
0, 1, 4, 4, 8, 9, 12, 11, 16, 17, 20, 20, 24, 25, 28, 26, 32, 33, 36, 36, 40, 41, 44, 43, 48, 49, 52, 52, 56, 57, 60, 57, 64, 65, 68, 68, 72, 73, 76, 75, 80, 81, 84, 84, 88, 89, 92, 90, 96, 97, 100, 100, 104, 105, 108, 107, 112, 113, 116, 116, 120, 121, 124, 120, 128
Offset: 1
G.f. = x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 9*x^6 + 12*x^7 + 11*x^8 + 16*x^9 + 17*x^10 + ...
-
a[n_]:= If[n<1, 0, 2n -2 - IntegerExponent[n, 2]]; (* Michael Somos, Mar 02 2014 *)
-
a(n)=valuation(4^(n-1)/n,2); \\ Joerg Arndt, Aug 13 2013
-
def A101921(n): return (n-1<<1)-(~n & n-1).bit_length() # Chai Wah Wu, Apr 14 2023
-
[2*n-2 -valuation(n,2) for n in (1..100)] # G. C. Greubel, Nov 29 2021
A036770
Number of labeled rooted trees with a degree constraint: (2*n)!/(2^n) * C(2*n+1, n).
Original entry on oeis.org
1, 3, 60, 3150, 317520, 52390800, 12843230400, 4382752374000, 1986847742880000, 1155153277710432000, 838011196011749760000, 742058914068404412480000, 787724078011075453248000000, 987468397792455300321600000000, 1443283810213452666950050560000000
Offset: 0
-
[Factorial(2*n)/(2^n) * Binomial(2*n+1, n): n in [0..15]]; // Vincenzo Librandi, Jan 29 2020
-
spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},labeled]: seq(combstruct[count](spec,size=n)
-
Range[0, 19]! CoefficientList[Series[(1 - (1 - 2 x^2)^(1/2))/x, {x, 0, 20}], x] (* Geoffrey Critzer, Nov 13 2011 *)
A174449
Triangle T(n, k, q) = n!*(n+1)!*q^k/((n-k)!(n-k+1)!) if floor(n/2) > k-1, otherwise n!*(n+1)!*q^(n-k)/(k!*(k+1)!) for q = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 240, 20, 1, 1, 30, 600, 600, 30, 1, 1, 42, 1260, 25200, 1260, 42, 1, 1, 56, 2352, 70560, 70560, 2352, 56, 1, 1, 72, 4032, 169344, 5080320, 169344, 4032, 72, 1, 1, 90, 6480, 362880, 15240960, 15240960, 362880, 6480, 90, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 12, 12, 1;
1, 20, 240, 20, 1;
1, 30, 600, 600, 30, 1;
1, 42, 1260, 25200, 1260, 42, 1;
1, 56, 2352, 70560, 70560, 2352, 56, 1;
1, 72, 4032, 169344, 5080320, 169344, 4032, 72, 1;
1, 90, 6480, 362880, 15240960, 15240960, 362880, 6480, 90, 1;
1, 110, 9900, 712800, 39916800, 1676505600, 39916800, 712800, 9900, 110, 1;
-
F:= Factorial; // T = A174449
T:= func< n,k,q | Floor(n/2) gt k-1 select F(n)*F(n+1)*q^k/(F(n-k)*F(n-k+1)) else F(n)*F(n+1)*q^(n-k)/(F(k)*F(k+1)) >;
[T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 29 2021
-
T[n_, k_, q_]:= If[Floor[n/2]>k-1, n!*(n+1)!*q^k/((n-k)!*(n-k+1)!), n!*(n+1)!*q^(n-k)/(k!*(k+1)!)];
Table[T[n, k, 1], {n,0,12}, {k,0,n}]//Flatten
-
f=factorial
def A174449(n,k,q):
if ((n//2)>k-1): return f(n)*f(n+1)*q^k/(f(n-k)*f(n-k+1))
else: return f(n)*f(n+1)*q^(n-k)/(f(k)*f(k+1))
flatten([[A174449(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Nov 29 2021
A329965
a(n) = ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2.
Original entry on oeis.org
1, 2, 6, 72, 240, 7200, 25200, 1411200, 5080320, 457228800, 1676505600, 221298739200, 821966745600, 149597947699200, 560992303872000, 134638152929280000, 508633022177280000, 155641704786247680000, 591438478187741184000, 224746621711341649920000
Offset: 0
-
A329965 := n -> ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2:
seq(A329965(n), n=0..19);
-
ser := Series[(1 - Sqrt[1 - 4 x^2] - 4 x^2 (1 - x - Sqrt[1 - 4 x^2]))/(2 x^2 (1 - 4 x^2)^(3/2)), {x, 0, 22}]; Table[n! Coefficient[ser, x, n], {n, 0, 20}]
Table[(1+n)Floor[1+n/2](n!/Floor[1+n/2]!)^2,{n,0,30}] (* Harvey P. Dale, Oct 01 2023 *)
-
from fractions import Fraction
def A329965():
x, n = 1, Fraction(1)
while True:
yield int(x)
m = n if n % 2 else 4/(n+2)
n += 1
x *= m * n
a = A329965(); [next(a) for i in range(36)]
Showing 1-4 of 4 results.
Comments