A037053
Smallest prime containing exactly n 0's.
Original entry on oeis.org
2, 101, 1009, 10007, 100003, 1000003, 20000003, 100000007, 1000000007, 30000000001, 100000000003, 2000000000003, 40000000000001, 1000000000000037, 6000000000000001, 20000000000000003, 100000000000000003, 1000000000000000003, 60000000000000000007, 500000000000000000003
Offset: 0
Cf.
A037052,
A034388,
A085824. Least prime with n '1's,...,'9's:
A037055,
A037057,
A037059,
A037061,
A037063,
A037065,
A037067,
A037069,
A037071. The indices of these primes are given in
A037052 -
A037070.
-
F:= proc(n)
local a,b,cands,p;
cands:= [seq(seq(10^(n+1)*a+b,b=[1,3,7,9]),a=1..9), seq(seq(seq(10^(n+2)+a*10^j+b,b=[1,3,7,9]),a=1..9),j=1..n+1)];
for p in cands do if isprime(p) then return p fi od;
error("No candidate is prime");
end proc:
2, seq(F(n),n=1..40); # Robert Israel, Feb 19 2016
-
f[n_] := Block[{pc}, a = 1; While[a < 10, b = 1; While[b < 10, pc = a*10^(n + 1) + b; If[PrimeQ[pc], Goto[fini]]; b += 2]; a++]; e = 1; While[e < n + 2, b = 1; While[b < 10, c = 1; While[c < 10, pc = 10^(n + 2) + b*10^e + c; If[ PrimeQ[pc], Goto[ fini]]; c += 2]; b++]; e++]; Label[ fini]; pc]; f[0] = 2; Array[f, 25, 0] (* Robert G. Wilson v, Feb 21 2016 *)
-
A037053(n)={n&&forstep(i=n=10^(n+1),9*n,n,nextprime(i)p*=10, forstep(j=i+p,i+9*p,p,nextprime(j)M. F. Hasler, Feb 19 2016
More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Aug 16 2002
Extended with a(0) = 2 and three lines of data completed by
M. F. Hasler, Feb 19 2016
A037070
a(n)-th prime is the smallest prime containing exactly n 9's.
Original entry on oeis.org
1, 8, 46, 303, 5133, 17984, 216816, 1270607, 41146179, 420243162, 2524038155, 36159205628, 343392568900, 1955010428258, 15237833654620, 260219446617109, 2621513397605657, 24619309639366177, 233874804775621799, 684559920583084690, 20920441130654929928, 200085344903558463823
Offset: 0
-
(* see A037071 for f *) PrimePi[ Table[ f[n, 9], {n, 1, 13}]]
a(14)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 21 2025
A037054
a(n)-th prime is the smallest prime containing exactly n 1's.
Original entry on oeis.org
1, 6, 5, 187, 1242, 9682, 86538, 733339, 5821735, 56196114, 503193257, 4161915701, 41621368333, 383118399789, 3549047966306, 33056584174792, 309353882119895, 2651938403956789, 27417323062119921, 27417323062119920, 2461813897281353902, 23422580231698331842
Offset: 0
-
(* see A037055 for f *) PrimePi[ Table[ f[n, 1], {n, 1, 13}]]
a(14)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 20 2025
A037056
a(n)-th prime is the smallest prime containing exactly n 2's.
Original entry on oeis.org
2, 1, 48, 331, 2490, 94500, 1283805, 1402294, 12238270, 891573671, 975688072, 77612456753, 715763987889, 748327378591, 6944174236934, 580400102242316, 5209104353769836, 5710407472211223, 510579443617388387, 4806424039483242581, 45763276831811185976, 440594267900327752100
Offset: 0
-
(* see A037057 for f *) PrimePi[ Table[ f[n, 2], {n, 1, 13}]]
a(14)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 20 2025
A037058
a(n)-th prime is the smallest prime containing exactly n 3's.
Original entry on oeis.org
1, 2, 51, 345, 2602, 27062, 232466, 1935248, 17950160, 155123231, 1022275037, 13076476440, 119921146473, 1100928006234, 9986615648246, 39453679683959, 636484070277727, 8477216022186037, 80079195779613271, 758351887226957873, 7209429409009441899, 68676498683402943115
Offset: 0
-
(* see A037059 for f *) PrimePi[ Table[ f[n, 3], {n, 1, 13}]]
a(14)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 20 2025
A037060
a(n)-th prime is the smallest prime containing exactly n 4's.
Original entry on oeis.org
1, 13, 86, 603, 4620, 37299, 1533327, 22568442, 23574105, 210014510, 1893613727, 17241353173, 493582559244, 13474975578701, 71056054875827, 1180956491651370, 10728352138939963, 103710009988272649, 960912626678471376, 1005142876338508545, 50686811139876408310, 288867303325879381560
Offset: 0
-
(* see A037061 for f *) PrimePi[ Table[ f[n, 4], {n, 1, 12}]]
a(13)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 20 2025
A037062
a(n)-th prime is the smallest prime containing exactly n 5's.
Original entry on oeis.org
1, 3, 102, 733, 14319, 45741, 1004275, 3313338, 169807396, 259770566, 20255937351, 21366409911, 196256438549, 10949682060338, 16876678891444, 1376534319069676, 13702579963679833, 13947379867469643, 360360819534753751, 3421022095727840569, 93257415087729395138, 113268191247939457737
Offset: 0
-
(* see A037063 for f *) PrimePi[ Table[ f[n, 5], {n, 1, 12}]]
a(13)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 20 2025
A037064
a(n)-th prime is the smallest prime containing exactly n 6's.
Original entry on oeis.org
1, 18, 121, 859, 15226, 54070, 1071206, 3933314, 34614430, 309084622, 2792083255, 61496476037, 1214237371612, 5255429125063, 105341326636887, 458846460486827, 15441107727480784, 16660543186177748, 832868428561305574, 1494006786965549890, 14206605445888164436, 135418222271099812357
Offset: 0
-
(* see A037065 for f *) PrimePi[ Table[ f[n, 6], {n, 1, 12}]]
a(13)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 20 2025
A037066
a(n)-th prime is the smallest prime containing exactly n 7's.
Original entry on oeis.org
1, 4, 59, 275, 4924, 58623, 506877, 4546755, 30224014, 87818618, 2836649805, 14748299309, 251285857122, 603200604933, 17530836835060, 80446298927642, 2054098188682332, 9577010472498628, 67026825574168206, 1605887402218872982, 16520076587958693329, 156502536697199220470
Offset: 0
-
(* see A037067 for f *) PrimePi[ Table[ f[n, 7], {n, 1, 12}]]
a(14)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 21 2025
A037068
a(n)-th prime is the smallest prime containing exactly n 8's.
Original entry on oeis.org
1, 23, 152, 1107, 8611, 70478, 1793210, 5156463, 45470645, 2074530409, 11397691034, 33578243459, 1603686087003, 2859644709998, 26622184513952, 518238694402971, 2339285051888769, 69641948074252447, 208626752630607267, 8383527978057824838, 119921750787289924042, 375732914981870085595
Offset: 0
-
(* see A037069 for f *) PrimePi[ Table[ f[n, 8], {n, 1, 13}]]
a(12) corrected and a(13)-a(21) calculated using Kim Walisch's primecount and added by
Amiram Eldar, Jul 21 2025
Showing 1-10 of 10 results.
Comments