A037240 Molien series for 3-D group X1.
1, 1, 5, 10, 24, 42, 83, 132, 222, 335, 511, 728, 1047, 1428, 1956, 2586, 3414, 4389, 5638, 7084, 8888, 10966, 13494, 16380, 19841, 23751, 28371, 33566, 39616, 46376, 54177, 62832, 72726, 83661, 96045, 109668, 124999, 141778, 160538, 181006, 203742, 228459, 255788, 285384
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Ö. Egecioglu, Uniform generation of anonymous and neutral preference profiles for social choice rules, Technical Report, UCSB, 2005.
- Ö. Egecioglu, Uniform generation of anonymous and neutral preference profiles for social choice rules, Monte Carlo Methods and Applications, 15(3), Jan 2009, 241-255.
- Ira Gessel, Combinatorial counting with symmetry, MathOverflow, 2014.
- Marko V. Jaric and Joseph L. Birman, Calculation of the Molien generating function for invariants of space groups, J. Math. Phys. 18 (1977), 1459-1465; 2085.
- Alexander V. Karpov, An Informational Basis for Voting Rules, NRU Higher School of Economics. Series WP BRP "Economics/EC". 2018. No. 188.
- Index entries for Molien series
Crossrefs
Column k=3 of A333361.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1 +x^2 +3*x^3 +5*x^4 +x^5 +x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) )); // G. C. Greubel, Jan 31 2020 -
Maple
S:= series((1+x^2+3*x^3+5*x^4+x^5+ x^6)/(1 - x)/(1 - x^2)^3/(1 - x^3)^2, x, 101): seq(coeff(S,x,n),n=0..100); # Robert Israel, Nov 22 2017
-
Mathematica
CoefficientList[Series[(1 +x^2 +3x^3 +5x^4 +x^5 +x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2, {x, 0, 43}], x] (* Michael De Vlieger, Nov 01 2017 *)
-
PARI
Vec((1+x^2+3*x^3+5*x^4+x^5+x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2 + O(x^50)) \\ Michel Marcus, Oct 31 2017
-
Sage
def A037240_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^2+3*x^3+5*x^4+x^5+x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) ).list() A037240_list(50) # G. C. Greubel, Jan 31 2020
Formula
G.f.: (1 + x^2 + 3*x^3 + 5*x^4 + x^5 + x^6)/((1 - x)*(1 - x^2)^3*(1 - x^3)^2).
From Alexander Karpov, Nov 18 2017: (Start)
if n == 0 mod 6, a(n) = C(n+5,5)/6 + (n+4)*(n+2)/16 + (n+3)/9;
if n == 3 mod 6, a(n) = C(n+5,5)/6 + (n+3)/9;
if n == 2,4 mod 6, a(n) = C(n+5,5)/6 + (n+4)*(n+2)/16;
if n == 1,5 mod 6, a(n) = C(n+5,5)/6.
(End)
Extensions
Terms a(35) and beyond from Alexander Karpov, Oct 29 2017
Comments