cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037240 Molien series for 3-D group X1.

Original entry on oeis.org

1, 1, 5, 10, 24, 42, 83, 132, 222, 335, 511, 728, 1047, 1428, 1956, 2586, 3414, 4389, 5638, 7084, 8888, 10966, 13494, 16380, 19841, 23751, 28371, 33566, 39616, 46376, 54177, 62832, 72726, 83661, 96045, 109668, 124999, 141778, 160538, 181006, 203742, 228459, 255788, 285384
Offset: 0

Views

Author

Keywords

Comments

Also multidigraphs with 3 nodes and n arcs. - Vladeta Jovovic, Dec 27 1999
Also preference profiles with 3 alternatives and n agents (IANC model). - Alexander Karpov, Nov 23 2017

Crossrefs

Column k=3 of A333361.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1 +x^2 +3*x^3 +5*x^4 +x^5 +x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    S:= series((1+x^2+3*x^3+5*x^4+x^5+ x^6)/(1 - x)/(1 - x^2)^3/(1 - x^3)^2, x, 101):
    seq(coeff(S,x,n),n=0..100); # Robert Israel, Nov 22 2017
  • Mathematica
    CoefficientList[Series[(1 +x^2 +3x^3 +5x^4 +x^5 +x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2, {x, 0, 43}], x] (* Michael De Vlieger, Nov 01 2017 *)
  • PARI
    Vec((1+x^2+3*x^3+5*x^4+x^5+x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2 + O(x^50)) \\ Michel Marcus, Oct 31 2017
    
  • Sage
    def A037240_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2+3*x^3+5*x^4+x^5+x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) ).list()
    A037240_list(50) # G. C. Greubel, Jan 31 2020

Formula

G.f.: (1 + x^2 + 3*x^3 + 5*x^4 + x^5 + x^6)/((1 - x)*(1 - x^2)^3*(1 - x^3)^2).
From Alexander Karpov, Nov 18 2017: (Start)
if n == 0 mod 6, a(n) = C(n+5,5)/6 + (n+4)*(n+2)/16 + (n+3)/9;
if n == 3 mod 6, a(n) = C(n+5,5)/6 + (n+3)/9;
if n == 2,4 mod 6, a(n) = C(n+5,5)/6 + (n+4)*(n+2)/16;
if n == 1,5 mod 6, a(n) = C(n+5,5)/6.
(End)

Extensions

Terms a(35) and beyond from Alexander Karpov, Oct 29 2017