cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A027623 a(0) = 1; for n > 0, a(n) = number of rings with n elements.

Original entry on oeis.org

1, 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, 390, 2, 22, 2, 22, 4, 4, 2, 104, 11, 4, 59, 22, 2, 8, 2
Offset: 0

Views

Author

Keywords

Comments

Here a ring means (R,+,*): (R,+) is an abelian group, * is associative, a*(b+c) = a*b + a*c, (a+b)*c = a*c + b*c. Need not contain "1", * need not be commutative.
The sequence continues a(32) = ? (>18590), a(33) = 4, 4, 4, 121, 2, 4, 4, 104, 2, 8, 2, 22, 22, 4, 2, 780, 11, 22, 4, 22, 2, 118, 4, 104, 4, 4, 2, 44, 2, 4, 22 = a(63), a(64) = ? (> 829826). - Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000
The paper by Antipkin/Elizarov also gives the number a(p^3) of rings of order p^3. - Hans H. Storrer (storrer(AT)math.unizh.ch), Sep 16 2003
If n is a squared prime, there are 11 mutually nonisomorphic rings of order n [see Raghavendran, p. 228]. - R. J. Mathar, Apr 20 2008

Examples

			The 11 rings of order 4 (from _Christian G. Bower_):
  over C4: 1*1 = 0, 1 or 2;
  over C2 X C2 = <1> X <2>: (1*1,1*2,2*1,2*2) = 0000, 0001, 0002, 0012, 0102, 0112, 1002 or 1223.
		

Crossrefs

From Bernard Schott, Mar 28 2021: (Start)
--------------------------------------------------------------------
| Rings with | with 1 | without 1 | with 1 or |
| n elements | | | without 1 |
--------------------------------------------------------------------
| Commutative | A127707 | A342375 | A037289 |
--------------------------------------------------------------------
| Noncommutative | A127708 | A342376 | A209401 |
--------------------------------------------------------------------
| Commutative or | A037291 | A342377 | this sequence: a(0) = 1 |
| noncommutative | | | A037234 with a(0) = 0 |
--------------------------------------------------------------------
(End)

Programs

  • PARI
    apply( A027623(n, e=0)=if( !e, vecprod([call(self(), f) | f <- factor(n)~]), e<3, [2^(n>0), 11][e], e==3, if(n>2, 3*sqrtnint(n, 3), 2)+50, n>2 || e>4, /*error*/("not yet implemented"), 390), [0..63]) \\ M. F. Hasler, Jan 05 2021

Extensions

More terms from Christian G. Bower, Jun 15 1998
a(16) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000

A037289 Number of commutative rings with n elements.

Original entry on oeis.org

1, 2, 2, 9, 2, 4, 2, 34, 9, 4, 2, 18, 2, 4, 4, 162, 2, 18, 2, 18, 4, 4, 2, 68, 9, 4, 36, 18, 2, 8, 2
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Comments

These rings do not necessarily contain an identity element.
This sequence is multiplicative. See the reference "The Numbers of Small Rings" below, which proves the result for all rings; restricting to commutative rings only makes the proof easier. - Conjecture by Mitch Harris, Apr 19 2005, proof found by Franklin T. Adams-Watters, Jul 10 2012

Crossrefs

Formula

a(p^n) = p^(2/27 * n^3 + O(n^2.5)), see Blackburn & McLean. - Charles R Greathouse IV, Jul 13 2022

Extensions

a(16) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000, who reports that the sequence continues a(32) = ? (> 876), a(33) = 4, 4, 4, 81, 2, 4, 4, 68, 2, 8, 2, 18, 18, 4, 2, 324, 9, 18, 4, 18, 2, 72, 4, 68, 4, 4, 2, 36, 2, 4, 18 = a(63), a(64) = ? (> 12696)

A127707 Number of commutative rings with 1 containing n elements.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 10, 4, 1, 1, 4, 1, 1, 1, 37, 1, 4, 1, 4, 1, 1, 1, 10, 4, 1, 11, 4, 1, 1, 1, 109, 1, 1, 1, 16, 1, 1, 1, 10, 1, 1, 1, 4, 4, 1, 1, 37, 4, 4, 1, 4, 1, 11, 1, 10, 1, 1, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Hugues Randriam (randriam(AT)enst.fr), Jan 24 2007

Keywords

Comments

Is this a multiplicative function?
Answer: yes! See the Eric M. Rains link for a proof for the result for all unital rings; restricting to commutative rings does not affect the essence of the proof. - Jianing Song, Feb 02 2020

Crossrefs

Formula

a(n) = A037291(n) - A127708(n). - Bernard Schott, Apr 19 2022

Extensions

Keyword 'mult' added by Jianing Song, Feb 02 2020
a(32)-a(63) using Nöbauer's data added by Andrey Zabolotskiy, Apr 18 2022
a(32) = 109 corrected by Bernard Schott, Apr 19 2022

A127708 Number of non-commutative rings with 1 containing n elements.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 99, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Hugues Randriam (randriam(AT)enst.fr), Jan 24 2007, Jan 29 2007

Keywords

Comments

We consider rings in which multiplication is associative and has a unit, but where there is at least one pair of non-commuting elements.

Examples

			a(n)=0 for n<=7 and a(8)=1, so all rings (with unit) of cardinality at most 7 are commutative, while the smallest non-commutative ring (with unit) has cardinality 8 and is unique up to isomorphism; it can be represented as the ring of upper-triangular matrices of size 2 over F_2.
A037291(32) = 208, A127707(32) = 109, hence a(32) = 208 - 109 = 99.
		

Crossrefs

Formula

a(n) = A037291(n) - A127707(n). - Bernard Schott, Apr 19 2022

Extensions

a(32)-a(63) from Bernard Schott, Apr 19 2022
a(54) corrected by Andrey Zabolotskiy, Feb 02 2023

A339948 Number of non-isomorphic generalized quaternion rings over Z/nZ.

Original entry on oeis.org

1, 1, 4, 7, 4, 16, 4, 16, 10, 16, 4, 40, 4, 16, 16, 36, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 52, 16, 16, 16
Offset: 1

Views

Author

Keywords

Comments

Generalized quaternion rings over Z/nZ are of the form Z_n/(x^2-a, y^2-b, xy+yx).

Examples

			For n=2 all such rings are isomorphic to Z_n<x,y>/(x^2, y^2, xy+yx), so a(2)=1.
For n=4:
  Z_n<x,y>/(x^2,   y^2,   xy+yx),
  Z_n<x,y>/(x^2,   y^2-1, xy+yx),
  Z_n<x,y>/(x^2,   y^2-2, xy+yx),
  Z_n<x,y>/(x^2,   y^2-3, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-1, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-2, xy+yx),
  Z_n<x,y>/(x^2-3, y^2-3, xy+yx),
so a(4)=7.
		

Crossrefs

Programs

  • Mathematica
    Clear[phi]; phi[1] = phi[2] = 1; phi[4] = 7; phi[8] = 16;
    phi[16] = 36; phi[p_, s_] := 2 s^2 + 2;
    phi[n_] :=  Module[{aux = FactorInteger[n]},Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];
    Table[phi[i], {i,1, 35}]

Formula

If n is odd then a(n) = A286779(n).

A341201 Number of unitary rings with additive group (Z/nZ)^3.

Original entry on oeis.org

1, 7, 7, 27, 7, 49, 7
Offset: 1

Views

Author

Keywords

Crossrefs

A341202 Number of unitary commutative rings with additive group (Z/nZ)^3.

Original entry on oeis.org

1, 6, 6, 16, 6, 36, 6
Offset: 1

Views

Author

Keywords

Crossrefs

A209401 Number of noncommutative rings with n elements.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 18, 2, 0, 0, 4, 0, 0, 0, 228, 0, 4, 0, 4, 0, 0, 0, 36, 2, 0, 23, 4, 0, 0, 0
Offset: 1

Views

Author

Ben Branman, Mar 26 2012

Keywords

Comments

a(n)=0 if and only if n is squarefree.

Examples

			For n=8, there are 52 rings of order 8, 18 of which are noncommutative, so a(8)=18.
		

Crossrefs

Formula

a(n) = A027623(n) - A037289(n).

A342376 Number of non-commutative rings without 1 containing n elements.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 17, 2, 0, 0, 4, 0, 0, 0, 215, 0, 4, 0, 4, 0, 0, 0, 35, 2, 0, 23, 4, 0, 0, 0
Offset: 1

Views

Author

Bernard Schott, Mar 10 2021

Keywords

Comments

A ring without 1 is still a ring, although sometimes called a rng, or a non-unital ring, or a pseudo-ring (see Wikipedia links).
These are rings in which multiplication has no unit, and where there is at least one pair of non-commuting elements.
a(n)=0 if and only if n is squarefree.

Examples

			For n=4, there are 11 rings of order 4, 2 of which are without 1 and non-commutative, so a(4)= 2. Note that for these 2 rings, the abelian group under addition is the commutative Klein group Z/2Z + Z/2Z. These two rings are the last two rings described in the link _Greg Dresden_ in reference: Ring 22.NC.1 and Ring 22.NC.2.
		

Crossrefs

Number of non-commutative rings: A127708 (with 1 containing n elements), this sequence (without 1 containing n elements), A209401 (with n elements).

Formula

a(n) = A209401(n) - A127708(n) = A342377(n) - A342375(n).
a(A005117(n)) = 0; a(A013929(n)) > 0.

Extensions

a(28) corrected by Des MacHale, Mar 20 2021

A037221 Number of near-rings (or nearrings) definable on cyclic group of order n.

Original entry on oeis.org

3, 5, 12, 10, 60, 24, 135, 222, 329, 139, 1749, 454, 2716, 3817
Offset: 2

Views

Author

Keywords

Crossrefs

Extensions

Corrected by Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000
Showing 1-10 of 17 results. Next