A037480 Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
1, 5, 16, 50, 151, 455, 1366, 4100, 12301, 36905, 110716, 332150, 996451, 2989355, 8968066, 26904200, 80712601, 242137805, 726413416, 2179240250, 6537720751, 19613162255, 58839486766, 176518460300, 529555380901
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3).
Programs
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+3 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
-
Mathematica
CoefficientList[Series[(2 x + 1)/((x - 1) (x + 1) (3 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, May 01 2014 *) Table[FromDigits[PadRight[{},n,{1,2}],3],{n,30}] (* or *) LinearRecurrence[ {3,1,-3},{1,5,16},30] (* Harvey P. Dale, Dec 15 2019 *)
-
PARI
Vec(x*(2*x+1)/((x-1)*(x+1)*(3*x-1)) + O(x^100)) \\ Colin Barker, Apr 30 2014
Formula
a(n) = (5*3^n + (-1)^n - 6)/8 . - Paul D. Hanna, Sep 23 2007
a(n) = 3*a(n-1)+a(n-2)-3*a(n-3). G.f.: x*(2*x+1) / ((x-1)*(x+1)*(3*x-1)). - Colin Barker, Apr 30 2014