cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A132843 a(n) = A005704( A037480(n) ) for n>0 with a(0)=1, where A005704 = number of partitions of 3n into powers of 3 and A037480(n) = n-th number having alternating base-3 digits 1, 2 (starting with '1').

Original entry on oeis.org

1, 2, 9, 72, 1296, 52407, 5240052, 1314516033, 853923545352, 1457086698392796, 6631460154689418828, 81384300080656595328843, 2719577128999047606509974434, 249432083657086432899494832228657
Offset: 0

Views

Author

Paul D. Hanna, Sep 27 2007

Keywords

Examples

			Let b(n) = A005704(n) = number of partitions of 3n into powers of 3,
then the initial terms of this sequence begin:
b(0), b(1), b(5), b(16), b(50), b(151), b(455), b(1366),...
APPLICATION: SPECIAL TERNARY TREE.
a(n) = number of nodes in generation n of the following tree.
Start at generation 0 with a single root node labeled [2].
From then on, each parent node [k] is attached k child nodes with
labels congruent to 2(mod 3) for even n, or 3(mod 3) for odd n,
within the range {1..3k}, for generation n >= 0.
The initial generations 0..3 of the tree begin as follows;
the path from the root node is given, followed by child nodes in [].
GEN.0: [2];
GEN.1: 2->[3,6];
GEN.2:
2-3->[2,5,8]
2-6->[2,5,8,11,14,17];
GEN.3:
2-3-2->[3,6]
2-3-5->[3,6,9,12,15]
2-3-8->[3,6,9,12,15,18,21,24]
2-6-2->[3,6]
2-6-5->[3,6,9,12,15]
2-6-8->[3,6,9,12,15,18,21,24]
2-6-11->[3,6,9,12,15,18,21,24,27,30,33]
2-6-14->[3,6,9,12,15,18,21,24,27,30,33,36,39,42]
2-6-17->[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51] .
Note: largest node label in generation n is A037480(n) + 1,
and the sum of the labels in generation n equals a(n+1).
		

Crossrefs

Cf. A005704, A037480; variant: A132880.

Programs

Formula

a(n) = A005704( (5*3^n + (-1)^n - 6)/8 ).

A171475 a(n) = 6*a(n-1) - 8*a(n-2), for n > 2, with a(0) = 1, a(1) = 6, a(2) = 27.

Original entry on oeis.org

1, 6, 27, 114, 468, 1896, 7632, 30624, 122688, 491136, 1965312, 7862784, 31454208, 125822976, 503304192, 2013241344, 8053014528, 32212156416, 128848822272, 515395682304, 2061583515648, 8246335635456, 32985345687552
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Binomial transform of A037480; second binomial transform of A133600.
First differences of A080960.

Crossrefs

Cf. A037480 ((5*3^n +(-1)^n -6)/8), A133600 (row sums of triangle A133599), A080960 (third binomial transform of A010685).

Programs

  • Magma
    I:=[6,27]; [1] cat [n le 2 select I[n] else 6*Self(n-1) - 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 02 2021
    
  • Mathematica
    Table[If[n==0, 1, 3*(5*4^n - 2*2^n)/8],{n,0,30}] (* G. C. Greubel, Dec 02 2021 *)
    LinearRecurrence[{6,-8},{1,6,27},30] (* Harvey P. Dale, Oct 25 2023 *)
  • PARI
    {m=21; v=concat([1, 6, 27], vector(m-3)); for(n=4, m, v[n]=6*v[n-1]-8*v[n-2]); v}
    
  • Sage
    [1]+[3*(5*4^n - 2*2^n)/8 for n in (1..30)] # G. C. Greubel, Dec 02 2021

Formula

a(n) = 3*(5*4^n - 2*2^n)/8 for n > 0.
G.f.: (1-x)*(1+x)/((1-2*x)*(1-4*x)).
E.g.f.: (1/8)*(-1 - 6*exp(2*x) + 15*exp(4*x)). - G. C. Greubel, Dec 02 2021
Showing 1-2 of 2 results.