cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037966 a(n) = n^2*binomial(2*n-2, n-1).

Original entry on oeis.org

0, 1, 8, 54, 320, 1750, 9072, 45276, 219648, 1042470, 4862000, 22355476, 101582208, 457002364, 2038517600, 9026235000, 39710085120, 173712232710, 756088415280, 3276123843300, 14138105520000, 60790319209620, 260516811228960, 1113068351807880, 4742456099097600, 20154752301937500, 85453569951920352
Offset: 0

Views

Author

Keywords

References

  • The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972.

Crossrefs

Programs

  • Magma
    [0] cat [n^3*Catalan(n-1): n in [1..30]]; // G. C. Greubel, Jun 19 2022
    
  • Mathematica
    Array[#^2*Binomial[2#-2, #-1] &, 27, 0] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    {a(n) = n^2*binomial(2*n-2, n-1)} \\ Seiichi Manyama, Jul 15 2020
    
  • SageMath
    [n^3*catalan_number(n-1) for n in (0..30)] # G. C. Greubel, Jun 19 2022

Formula

a(n) = Sum_{k=0..n} k^2*binomial(n,k)^2. - Paul Barry, Mar 04 2003
a(n) = n^2*A000984(n-1). - Zerinvary Lajos, Jan 18 2007, corrected Jul 26 2015
a(n) = n*A037965(n). - Zerinvary Lajos, Jan 18 2007, corrected Jul 26 2015
(n-1)^3*a(n) = 2*n^2*(2*n-3)*a(n-1). - R. J. Mathar, Jul 26 2015
E.g.f.: x*exp(2*x)*((1 + 2*x)*BesselI(0,2*x) + 2*x*BesselI(1,2*x)). - Ilya Gutkovskiy, Mar 04 2021

Extensions

More terms from Seiichi Manyama, Jul 15 2020