A037972
a(n) = n^2*(n+1)*binomial(2*n-2, n-1)/2.
Original entry on oeis.org
0, 1, 12, 108, 800, 5250, 31752, 181104, 988416, 5212350, 26741000, 134132856, 660284352, 3199016548, 15288882000, 72209880000, 337535723520, 1563410094390, 7182839945160, 32761238433000, 148450107960000, 668693511305820, 2995943329133040, 13356820221694560
Offset: 0
- Identity (3.78), S_{3}, in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 31.
-
[n^2*(n+1)*Binomial(2*n-2, n-1)/2: n in [0..30]]; // G. C. Greubel, Jun 22 2022
-
Table[n^2*Binomial[n+1,2]*CatalanNumber[n-1], {n,0,30}] (* G. C. Greubel, Jun 22 2022 *)
-
{a(n) = n^2*(n+1)*binomial(2*n-2, n-1)/2} \\ Seiichi Manyama, Aug 09 2020
-
[n^2*binomial(n+1,2)*catalan_number(n-1) for n in (0..30)] # G. C. Greubel, Jun 22 2022
A329444
The sixth moments of the squared binomial coefficients; a(n) = Sum_{m=0..n} m^6*binomial(n, m)^2.
Original entry on oeis.org
0, 1, 68, 1314, 18080, 197350, 1836792, 15233316, 115776768, 821760390, 5520171800, 35438827996, 219038609088, 1310833221724, 7629754810160, 43348888067400, 241117582878720, 1316197491501510, 7065439665315480, 37362065079691500, 194909773207512000, 1004374157379474420
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[(&+[Binomial(n,k)^2*k^6: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
Table[Sum[m^6*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
-
a(n) = sum(m=0, n, m^6*binomial(n, m)^2); \\ Jinyuan Wang, Nov 23 2019
-
[n^3*(n+1)*(n^6+3*n^5-13*n^4-15*n^3+30*n^2+8*n-2)*catalan_number(n)/(8*(2*n-1)*(2*n-3)*(2*n-5)) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A074334
a(n) = Sum_{r=1..n} r^4*binomial(n,r)^2.
Original entry on oeis.org
0, 1, 20, 234, 2144, 16750, 117432, 761460, 4654848, 27173718, 152867000, 834212236, 4438175040, 23108423884, 118111709744, 594059985000, 2946077521920, 14429322555750, 69892354873080, 335194270938780, 1593211647720000, 7511501237722020, 35153884344493200
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[n le 1 select n else n^2*(n^3+n^2-3*n-1)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
Total/@Table[r^4 Binomial[n,r]^2,{n,0,20},{r,n}] (* Harvey P. Dale, Dec 04 2017 *)
Table[n^2*(n^3+n^2-3*n-1)*CatalanNumber[n-2] -Boole[n==1], {n,0,30}] (* G. C. Greubel, Jun 23 2022 *)
-
vector(30, n, n--; sum(k=1, n, k^4*binomial(n,k)^2)) \\ Michel Marcus, Aug 19 2015
-
[n^2*(n^3+n^2-3*n-1)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A141611
Triangle read by rows: T(n, k) = (n-k+1)*(k+1)*binomial(n, k).
Original entry on oeis.org
1, 2, 2, 3, 8, 3, 4, 18, 18, 4, 5, 32, 54, 32, 5, 6, 50, 120, 120, 50, 6, 7, 72, 225, 320, 225, 72, 7, 8, 98, 378, 700, 700, 378, 98, 8, 9, 128, 588, 1344, 1750, 1344, 588, 128, 9, 10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10, 11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11
Offset: 0
Triangle begins as:
1;
2, 2;
3, 8, 3;
4, 18, 18, 4;
5, 32, 54, 32, 5;
6, 50, 120, 120, 50, 6;
7, 72, 225, 320, 225, 72, 7;
8, 98, 378, 700, 700, 378, 98, 8;
9, 128, 588, 1344, 1750, 1344, 588, 128, 9;
10, 162, 864, 2352, 3780, 3780, 2352, 864, 162, 10;
11, 200, 1215, 3840, 7350, 9072, 7350, 3840, 1215, 200, 11;
...
From _Peter Bala_, Mar 06 2017: (Start)
Factorization as a square array
/1 \ /1 2 3 4...\ /1 2 3 4...\
|2 2 | | 2 6 12...| |2 8 12 32...|
|3 6 3 |*| 3 12...|=|3 18 54 120...|
|4 12 12 4 | | 4...| |4 32 120 320...|
|... | | | |... |
(End)
-
A141611:= func< n,k | (k+1)*(n-k+1)*Binomial(n,k) >;
[A141611(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 22 2024
-
T[n_, m_]:= (n-m+1)*(m+1)*Binomial[n,m];
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
-
T(n,m)=(n - m + 1)*(m + 1)*binomial(n, m) \\ Charles R Greathouse IV, Feb 15 2017
-
def A141611(n,k): return (k+1)*(n-k+1)*binomial(n,k)
flatten([[A141611(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Sep 22 2024
A329913
The fifth moments of the squared binomial coefficients; a(n) = Sum_{m=0..n} m^5*binomial(n, m)^2.
Original entry on oeis.org
0, 1, 36, 540, 6080, 56250, 455112, 3342192, 22809600, 146988270, 904475000, 5358254616, 30750385536, 171773279860, 937514244240, 5014575000000, 26351064760320, 136319273714070, 695429503781400, 3503580441563400, 17452918098000000, 86055711108818220
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[(&+[Binomial(n,k)^2*k^5: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
seq( binomial(2*n,n)*n^4*(n^3 + 3*n^2 - 3*n - 5)/((16*n-8)*(2*n-3)),n=0..30); # Robert Israel, Jan 26 2020
-
Table[Sum[m^5*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
-
a(n) = sum(k=0, n, k^5*binomial(n, k)^2); \\ Michel Marcus, Nov 24 2019
-
[n^4*(n+1)*(n^3+3*n^2-3*n-5)/(8*(2*n-1)*(2*n-3))*catalan_number(n) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A336828
a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.
Original entry on oeis.org
1, 1, 8, 108, 2144, 56250, 1836792, 71799504, 3269445888, 169974711630, 9934458411800, 644825382429096, 46022332032100800, 3582265183110626740, 302002255041807372080, 27413749834141448520000, 2665789990569658618398720, 276477318687585566522176470
Offset: 0
Cf.
A000984,
A002457,
A037966,
A037972,
A072034,
A074334,
A187021,
A329444,
A329913,
A336214,
A341815.
-
Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]
-
a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ Michel Marcus, Aug 05 2020
A174126
Triangle T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 36, 9, 1, 1, 16, 144, 144, 16, 1, 1, 25, 400, 900, 400, 25, 1, 1, 36, 900, 3600, 3600, 900, 36, 1, 1, 49, 1764, 11025, 19600, 11025, 1764, 49, 1, 1, 64, 3136, 28224, 78400, 78400, 28224, 3136, 64, 1, 1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 4, 4, 1;
1, 9, 36, 9, 1;
1, 16, 144, 144, 16, 1;
1, 25, 400, 900, 400, 25, 1;
1, 36, 900, 3600, 3600, 900, 36, 1;
1, 49, 1764, 11025, 19600, 11025, 1764, 49, 1;
1, 64, 3136, 28224, 78400, 78400, 28224, 3136, 64, 1;
1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else (n-k)^q*Binomial(n-1,k-1)^q >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[(i-1)^2, {i,2,n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (n-k)^q*Binomial[n-1, k-1]^q];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 10 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else (n-k)^q*binomial(n-1,k-1)^q
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
A349427
a(n) = ((n+1)^2 - 2) * binomial(2*n-2,n-1) / 2.
Original entry on oeis.org
0, 1, 7, 42, 230, 1190, 5922, 28644, 135564, 630630, 2892890, 13117676, 58903572, 262303132, 1159666900, 5094808200, 22259364120, 96773942790, 418882316490, 1805951924700, 7758285404100, 33221013445620, 141830949914940, 603876402587640, 2564713671647400
Offset: 0
Cf.
A000108,
A000217,
A000984,
A001700,
A001793,
A002457,
A002544,
A008865,
A037966,
A088218,
A127736.
-
Table[((n + 1)^2 - 2) Binomial[2 n - 2, n - 1]/2, {n, 0, 24}]
nmax = 24; CoefficientList[Series[x (1 - x) (1 - 2 x)/(1 - 4 x)^(5/2), {x, 0, nmax}], x]
-
a(n) = ((n+1)^2 - 2) * binomial(2*n-2,n-1) / 2 \\ Andrew Howroyd, Nov 20 2021
A336955
a(n) = Sum_{k=0..n} k^k * binomial(n, k)^2.
Original entry on oeis.org
1, 2, 9, 73, 849, 12651, 228493, 4836301, 117204545, 3196763983, 96842596701, 3224356269597, 116981406934417, 4591908332288837, 193846634326107701, 8755364023207809301, 421214258699748184321, 21500563181275847468503, 1160430732790051008442141, 66020998289431649938896445
Offset: 0
-
a[n_] := 1 + Sum[k^k * Binomial[n, k]^2, {k, 1, n}]; Array[a, 20, 0] (* Amiram Eldar, Aug 09 2020 *)
-
{a(n) = sum(k=0, n, k^k*binomial(n, k)^2)}
Showing 1-9 of 9 results.
Comments