A037972
a(n) = n^2*(n+1)*binomial(2*n-2, n-1)/2.
Original entry on oeis.org
0, 1, 12, 108, 800, 5250, 31752, 181104, 988416, 5212350, 26741000, 134132856, 660284352, 3199016548, 15288882000, 72209880000, 337535723520, 1563410094390, 7182839945160, 32761238433000, 148450107960000, 668693511305820, 2995943329133040, 13356820221694560
Offset: 0
- Identity (3.78), S_{3}, in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 31.
-
[n^2*(n+1)*Binomial(2*n-2, n-1)/2: n in [0..30]]; // G. C. Greubel, Jun 22 2022
-
Table[n^2*Binomial[n+1,2]*CatalanNumber[n-1], {n,0,30}] (* G. C. Greubel, Jun 22 2022 *)
-
{a(n) = n^2*(n+1)*binomial(2*n-2, n-1)/2} \\ Seiichi Manyama, Aug 09 2020
-
[n^2*binomial(n+1,2)*catalan_number(n-1) for n in (0..30)] # G. C. Greubel, Jun 22 2022
A329444
The sixth moments of the squared binomial coefficients; a(n) = Sum_{m=0..n} m^6*binomial(n, m)^2.
Original entry on oeis.org
0, 1, 68, 1314, 18080, 197350, 1836792, 15233316, 115776768, 821760390, 5520171800, 35438827996, 219038609088, 1310833221724, 7629754810160, 43348888067400, 241117582878720, 1316197491501510, 7065439665315480, 37362065079691500, 194909773207512000, 1004374157379474420
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[(&+[Binomial(n,k)^2*k^6: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
Table[Sum[m^6*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
-
a(n) = sum(m=0, n, m^6*binomial(n, m)^2); \\ Jinyuan Wang, Nov 23 2019
-
[n^3*(n+1)*(n^6+3*n^5-13*n^4-15*n^3+30*n^2+8*n-2)*catalan_number(n)/(8*(2*n-1)*(2*n-3)*(2*n-5)) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A329913
The fifth moments of the squared binomial coefficients; a(n) = Sum_{m=0..n} m^5*binomial(n, m)^2.
Original entry on oeis.org
0, 1, 36, 540, 6080, 56250, 455112, 3342192, 22809600, 146988270, 904475000, 5358254616, 30750385536, 171773279860, 937514244240, 5014575000000, 26351064760320, 136319273714070, 695429503781400, 3503580441563400, 17452918098000000, 86055711108818220
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[(&+[Binomial(n,k)^2*k^5: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
seq( binomial(2*n,n)*n^4*(n^3 + 3*n^2 - 3*n - 5)/((16*n-8)*(2*n-3)),n=0..30); # Robert Israel, Jan 26 2020
-
Table[Sum[m^5*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
-
a(n) = sum(k=0, n, k^5*binomial(n, k)^2); \\ Michel Marcus, Nov 24 2019
-
[n^4*(n+1)*(n^3+3*n^2-3*n-5)/(8*(2*n-1)*(2*n-3))*catalan_number(n) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A336828
a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.
Original entry on oeis.org
1, 1, 8, 108, 2144, 56250, 1836792, 71799504, 3269445888, 169974711630, 9934458411800, 644825382429096, 46022332032100800, 3582265183110626740, 302002255041807372080, 27413749834141448520000, 2665789990569658618398720, 276477318687585566522176470
Offset: 0
Cf.
A000984,
A002457,
A037966,
A037972,
A072034,
A074334,
A187021,
A329444,
A329913,
A336214,
A341815.
-
Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]
-
a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ Michel Marcus, Aug 05 2020
A329521
The sixth moments of the alternated squared binomial coefficients; a(n) = Sum_{m=0..n} (-1)^m*m^6*binomial(n, m)^2.
Original entry on oeis.org
0, -1, 60, -162, -5280, 20250, 128520, -569380, -1854720, 9338490, 20097000, -113704668, -181621440, 1142905764, 1447926480, -10042461000, -10529925120, 79859881530, 71384175720, -587933314540, -457825368000, 4070529226764
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972.
-
[&+[(-1)^m*m^6*(Binomial(n,m))^2:m in [0..n]]:n in [0..21]]; // Marius A. Burtea, Nov 15 2019
-
Table[Sum[(-1)^m*m^6*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
-
a(n) = sum(m=0, n, (-1)^m*m^6*binomial(n , m)^2); \\ Michel Marcus, Nov 15 2019
Showing 1-5 of 5 results.