A329444
The sixth moments of the squared binomial coefficients; a(n) = Sum_{m=0..n} m^6*binomial(n, m)^2.
Original entry on oeis.org
0, 1, 68, 1314, 18080, 197350, 1836792, 15233316, 115776768, 821760390, 5520171800, 35438827996, 219038609088, 1310833221724, 7629754810160, 43348888067400, 241117582878720, 1316197491501510, 7065439665315480, 37362065079691500, 194909773207512000, 1004374157379474420
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[(&+[Binomial(n,k)^2*k^6: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
Table[Sum[m^6*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
-
a(n) = sum(m=0, n, m^6*binomial(n, m)^2); \\ Jinyuan Wang, Nov 23 2019
-
[n^3*(n+1)*(n^6+3*n^5-13*n^4-15*n^3+30*n^2+8*n-2)*catalan_number(n)/(8*(2*n-1)*(2*n-3)*(2*n-5)) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A074334
a(n) = Sum_{r=1..n} r^4*binomial(n,r)^2.
Original entry on oeis.org
0, 1, 20, 234, 2144, 16750, 117432, 761460, 4654848, 27173718, 152867000, 834212236, 4438175040, 23108423884, 118111709744, 594059985000, 2946077521920, 14429322555750, 69892354873080, 335194270938780, 1593211647720000, 7511501237722020, 35153884344493200
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[n le 1 select n else n^2*(n^3+n^2-3*n-1)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
Total/@Table[r^4 Binomial[n,r]^2,{n,0,20},{r,n}] (* Harvey P. Dale, Dec 04 2017 *)
Table[n^2*(n^3+n^2-3*n-1)*CatalanNumber[n-2] -Boole[n==1], {n,0,30}] (* G. C. Greubel, Jun 23 2022 *)
-
vector(30, n, n--; sum(k=1, n, k^4*binomial(n,k)^2)) \\ Michel Marcus, Aug 19 2015
-
[n^2*(n^3+n^2-3*n-1)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A329913
The fifth moments of the squared binomial coefficients; a(n) = Sum_{m=0..n} m^5*binomial(n, m)^2.
Original entry on oeis.org
0, 1, 36, 540, 6080, 56250, 455112, 3342192, 22809600, 146988270, 904475000, 5358254616, 30750385536, 171773279860, 937514244240, 5014575000000, 26351064760320, 136319273714070, 695429503781400, 3503580441563400, 17452918098000000, 86055711108818220
Offset: 0
- H. W. Gould, Combinatorial Identities, 1972. (See formulas 3.77, 3.78, and 3.79 on page 31.)
-
[(&+[Binomial(n,k)^2*k^5: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 23 2022
-
seq( binomial(2*n,n)*n^4*(n^3 + 3*n^2 - 3*n - 5)/((16*n-8)*(2*n-3)),n=0..30); # Robert Israel, Jan 26 2020
-
Table[Sum[m^5*(Binomial[n, m])^2, {m, 0, n}], {n, 21}]
-
a(n) = sum(k=0, n, k^5*binomial(n, k)^2); \\ Michel Marcus, Nov 24 2019
-
[n^4*(n+1)*(n^3+3*n^2-3*n-5)/(8*(2*n-1)*(2*n-3))*catalan_number(n) for n in (0..30)] # G. C. Greubel, Jun 23 2022
A336828
a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.
Original entry on oeis.org
1, 1, 8, 108, 2144, 56250, 1836792, 71799504, 3269445888, 169974711630, 9934458411800, 644825382429096, 46022332032100800, 3582265183110626740, 302002255041807372080, 27413749834141448520000, 2665789990569658618398720, 276477318687585566522176470
Offset: 0
Cf.
A000984,
A002457,
A037966,
A037972,
A072034,
A074334,
A187021,
A329444,
A329913,
A336214,
A341815.
-
Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]
-
a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ Michel Marcus, Aug 05 2020
A037976
a(n) = (1/4)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n, n) + (1-(-1)^n)*binomial(2*n, n)^2).
Original entry on oeis.org
0, 4, 16, 436, 3200, 78004, 675808, 15919320, 150266880, 3450748180, 34461586016, 774842070600, 8061900244736, 178065876017176, 1912172640160960, 41596867935469936, 458156035085377536
Offset: 0
- The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972. (See (3.75) on page 31.)
-
[(1/4)*((2*n+1)*Catalan(2*n) -(-1)^n*(n+1)*Catalan(n) +(1-(-1)^n)*(n+1)^2*Catalan(n)^2): n in [0..30]]; // G. C. Greubel, Jun 22 2022
-
A037976 := proc(n)
binomial(4*n,2*n)/4-(-1)^n*binomial(2*n,n)/4+(1-(-1)^n)*binomial(2*n,n)^2/4 ;
end proc:
seq(A037976(n),n=0..30) ; # R. J. Mathar, Jul 26 2015
-
With[{B=Binomial}, Table[(1/4)*(B[4*n,2*n] +B[2*n,n]^2 -2*(-1)^n*B[B[2*n,n] +1, 2]), {n,0,30}]] (* G. C. Greubel, Jun 22 2022 *)
-
b=binomial; [(1/4)*(b(4*n, 2*n) -(-1)^n*b(2*n, n) +(1-(-1)^n)*b(2*n, n)^2) for n in (0..30)] # G. C. Greubel, Jun 22 2022
A336955
a(n) = Sum_{k=0..n} k^k * binomial(n, k)^2.
Original entry on oeis.org
1, 2, 9, 73, 849, 12651, 228493, 4836301, 117204545, 3196763983, 96842596701, 3224356269597, 116981406934417, 4591908332288837, 193846634326107701, 8755364023207809301, 421214258699748184321, 21500563181275847468503, 1160430732790051008442141, 66020998289431649938896445
Offset: 0
-
a[n_] := 1 + Sum[k^k * Binomial[n, k]^2, {k, 1, n}]; Array[a, 20, 0] (* Amiram Eldar, Aug 09 2020 *)
-
{a(n) = sum(k=0, n, k^k*binomial(n, k)^2)}
Showing 1-6 of 6 results.