cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A038094 Number of rooted graphs on n labeled nodes where the root has degree 2.

Original entry on oeis.org

6, 96, 1920, 61440, 3440640, 352321536, 67645734912, 24739011624960, 17416264183971840, 23779006032516218880, 63309225660971181146112, 330036748754793764694786048, 3379576307249088150474609131520
Offset: 3

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Programs

  • Magma
    [n*Binomial(n-1, 2)*2^Binomial(n-1, 2): n in [3..20]]; // Vincenzo Librandi, Mar 29 2014
    
  • Mathematica
    Table[n*Binomial[n-1, 2]*2^Binomial[n-1, 2], {n, 3, 20}] (* Vaclav Kotesovec, Mar 29 2014 *)
  • PARI
    a(n) = {n * binomial(n-1, 2) * 2^binomial(n-1, 2)} \\ Andrew Howroyd, Nov 23 2020

Formula

a(n) = n * binomial(n-1, 2) * 2^binomial(n-1, 2).
a(n) = n * A103904(n-1) for n >= 3. - Andrew Howroyd, Nov 23 2020

A038095 Number of rooted connected graphs on n labeled nodes where the root has degree 2.

Original entry on oeis.org

6, 72, 1440, 49680, 2998800, 324237312, 64440883584, 24059497893120, 17143668999705600, 23569875858252303360, 63000019679242001900544, 329150325651711743768150016, 3374625529825460904919664793600, 68094821953233373962606732799672320
Offset: 3

Views

Author

Christian G. Bower, Jan 04 1999; suggested by Vlady Ravelomanana

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(sum(k=1, n, k*binomial(k-1, 2)*2^binomial(k-1, 2)*x^k/k!)/sum(k=0, n, 2^binomial(k, 2)*x^k/k!) + O(x*x^n)))} \\ Andrew Howroyd, Nov 23 2020

Formula

E.g.f.: B(x)/C(x) where B, C resp E.g.f.'s of A038094 and A006125.

Extensions

Terms a(12) and beyond corrected by Andrew Howroyd, Nov 23 2020

A038097 Number of rooted connected graphs on n labeled nodes where the root has degree 3.

Original entry on oeis.org

32, 1120, 53760, 4155200, 550305280, 129990260736, 56369709634560, 45808126727193600, 70779622448719134720, 210103333009795315650560, 1207180278201294640467288064, 13500153139563947729371140096000, 295095590701444457972767937903329280
Offset: 4

Views

Author

Christian G. Bower, Jan 04 1999; suggested by Vlady Ravelomanana

Keywords

Examples

			For n=4, take 4 nodes labeled a,b,c,d. We can choose the root in 4 ways, say a, and it must be joined to b,c,d. Each of the three edges bc, bd, cd may or may not exist, so there are 4*8 = 32 = a(4) possibilities.
		

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(sum(k=1, n, k*binomial(k-1,3)*2^binomial(k-1,2)*x^k/k!)/sum(k=0, n, 2^binomial(k, 2)*x^k/k!) + O(x*x^n)))} \\ Andrew Howroyd, Nov 23 2020

Formula

E.g.f.: B(x)/C(x) where B, C respectively are the e.g.f.'s for A038096 and A006125.

Extensions

Terms a(13) and beyond corrected by Andrew Howroyd, Nov 23 2020

A285529 Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216
Offset: 1

Views

Author

Geoffrey Critzer, Apr 20 2017

Keywords

Examples

			1,
2,   2,
6,   12,   6,
32,  96,   96,   32,
320, 1280, 1920, 1280, 320,
...
		

Crossrefs

Row sums give A095340.
Columns for k=0-3: A123903, A095338, A038094, A038096.

Programs

  • Mathematica
    nn = 9; Map[Select[#, # > 0 &] &,
      Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid

Formula

E.g.f. for column k: x * Sum_{n>=0} binomial(n,k)*2^binomial(n,2)*x^n/n!.
Sum_{k=1..n-1} T(n,k)*k/2 = A095351(n).
T(n,k) = n*binomial(n-1,k)*2^binomial(n-1,2). - Alois P. Heinz, Apr 21 2017
Showing 1-4 of 4 results.