A038107 Number of primes < n^2.
0, 0, 2, 4, 6, 9, 11, 15, 18, 22, 25, 30, 34, 39, 44, 48, 54, 61, 66, 72, 78, 85, 92, 99, 105, 114, 122, 129, 137, 146, 154, 162, 172, 181, 191, 200, 210, 219, 228, 240, 251, 263, 274, 283, 295, 306, 319, 329, 342, 357, 367, 378, 393, 409, 421, 434, 445, 457, 474
Offset: 0
Keywords
Examples
a(2)=2 because the only primes < 4 are 2 and 3.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187. (See Conjectures 2.14-2.16.)
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Cino Hilliard, Sum of Primes.
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
- Wikipedia, Legendre's conjecture.
Programs
-
Haskell
a038107 0 = 0 a038107 n = a000720 $ a000290 n -- Reinhard Zumkeller, Apr 15 2013, Nov 01 2011
-
Maple
A038107 := proc(n) numtheory[pi]( n^2) ; end: seq(A038107(n),n=0..100) ; # R. J. Mathar, Jun 22 2009
-
Mathematica
Table[PrimePi[n^2], {n, 0, 100}] (* Ray Chandler, Oct 22 2005 *)
-
PARI
a(n)=primepi(n^2) \\ Charles R Greathouse IV, Apr 26 2012
-
Sage
[prime_pi(n^2) for n in range(0, 59)] # Zerinvary Lajos, Jun 06 2009
Formula
a(n) ~ 1/2 * n^2/log n. - Charles R Greathouse IV, Apr 26 2012
Extensions
Extended by Ray Chandler, Oct 22 2005
Comments