A161621 Numerator of (b(n+1) - b(n))/(b(n+2) - b(n)), where b(n) = A038107(n) is the number of primes up to n^2.
1, 1, 2, 3, 1, 4, 3, 4, 3, 5, 4, 1, 5, 2, 6, 7, 5, 1, 6, 1, 1, 7, 2, 9, 8, 7, 8, 9, 1, 4, 10, 9, 10, 9, 10, 1, 3, 12, 11, 12, 11, 3, 12, 11, 13, 10, 13, 3, 10, 11, 15, 4, 12, 13, 11, 12, 17, 13, 1, 16, 13, 17, 15, 7, 16, 1, 15, 17, 13, 7, 1, 15, 1, 17, 9, 11, 7, 18, 23, 13, 20, 19, 20, 17, 16
Offset: 1
Examples
R(3) = (PrimePi(4^2)-PrimePi(3^2)) / (PrimePi(5^2)-PrimePi(3^2)) = (PrimePi(16)-PrimePi(9)) / (PrimePi(25)-PrimePi(9)) = (6-4)/(9-4) = 2/5. Hence a(3) = 2. - _Klaus Brockhaus_, Jun 15 2009
References
- S. Ramanujan, The Normal Number of Prime Factors of a Number n, reprinted at Chapter 35, Collected Papers (Hardy et al., ed), AMS Chelsea Publishing, 2000.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A014085
Cf. A161622 (denominators). - Klaus Brockhaus, Jun 15 2009
Programs
-
Magma
[ Numerator((#PrimesUpTo((n+1)^2)-a) / (#PrimesUpTo((n+2)^2)-a)) where a is #PrimesUpTo(n^2): n in [1..85] ]; // Klaus Brockhaus, Jun 15 2009
-
Mathematica
Numerator[(#[[2]]-#[[1]])/(#[[3]]-#[[1]])&/@Partition[PrimePi[ Range[ 90]^2],3,1]] (* Harvey P. Dale, Jan 06 2017 *)
Extensions
a(1) inserted and extended beyond a(13) by Klaus Brockhaus, Jun 15 2009
Simplified title by John W. Nicholson, Dec 13 2013
Comments