A038138 Order of n (mod 7).
0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0, 1, 3, 6, 3, 6, 2, 0
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Programs
-
Magma
[Modorder(n,7): n in [0..110]]; // Bruno Berselli, Mar 22 2016
-
Mathematica
ReplacePart[Table[MultiplicativeOrder[n, 7], {n, 105}], List /@ Range[7, 105, 7] -> 0] (* Alonso del Arte, Mar 23 2016 *) PadRight[{},120,{0,1,3,6,3,6,2}] (* Harvey P. Dale, Apr 26 2020 *)
-
PARI
a(n) = if (n % 7, znorder(Mod(n, 7)), 0); \\ Michel Marcus, Mar 22 2016
-
PARI
x='x+O('x^200); concat(0, Vec(x*(1+3*x+6*x^2+3*x^3+6*x^4+2*x^5)/(1-x^7))) \\ Altug Alkan, Mar 23 2016
Formula
G.f.: x*(1 + 3*x + 6*x^2 + 3*x^3 + 6*x^4 + 2*x^5)/(1 - x^7). - Bruno Berselli, Mar 22 2016
a(n) = -(35*(n mod 7)^6 - 603*(n mod 7)^5 + 3860*(n mod 7)^4 - 11235*(n mod 7)^3 + 14465*(n mod 7)^2 - 6882*(n mod 7))/360. - Luce ETIENNE, Oct 20 2017
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Apr 04 2000