A038186 Numbers divisible by the sum and product of their digits.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 36, 111, 112, 132, 135, 144, 216, 224, 312, 315, 432, 612, 624, 735, 1116, 1212, 1296, 1332, 1344, 1416, 2112, 2232, 2916, 3132, 3168, 3276, 3312, 4112, 4224, 6624, 6912, 8112, 9612, 11112, 11115, 11133, 11172, 11232
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10352 (first 1000 terms from T. D. Noe)
- József Sándor, Geometric Theorems, Diophantine Equations and Arithmetic Functions, American Research Press, Rehoboth, 2002.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a038186 n = a038186_list !! (n-1) a038186_list = map succ $ elemIndices 1 $ zipWith (*) (map a188641 [1..]) (map a188642 [1..]) -- Reinhard Zumkeller, Apr 07 2011
-
Mathematica
dspQ[n_]:=Module[{idn=IntegerDigits[n],t},t=Times@@idn;t!=0 && Divisible[n,Total[idn]] && Divisible[n,t]]; Select[Range[11500],dspQ] (* Harvey P. Dale, Jul 11 2011 *)
-
PARI
for(n=1,10^4,d=digits(n);s=sumdigits(n);p=prod(i=1,#d,d[i]);if(p&&!(n%s+n%p),print1(n,", "))) \\ Derek Orr, Apr 29 2015
-
Python
from math import prod def sd(n): return sum(map(int, str(n))) def pd(n): return prod(map(int, str(n))) def ok(n): return n%sd(n) == 0 and pd(n) and n%pd(n) == 0 def aupto(limit): return [m for m in range(1, limit+1) if ok(m)] print(aupto(11233)) # Michael S. Branicky, Jan 28 2021
Formula
Extensions
More terms from Patrick De Geest, Jun 15 1999
Comments