cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038199 Row sums of triangle T(m,n) = number of solutions to 1 <= a(1) < a(2) < ... < a(m) <= n, where gcd(a(1), a(2), ..., a(m), n) = 1, in A020921.

Original entry on oeis.org

1, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646
Offset: 1

Views

Author

Temba Shonhiwa (Temba(AT)maths.uz.ac.zw)

Keywords

Comments

The function T(m,n) described above has an inverse: see A038200.
Also, Moebius transform of 2^n - 1 = A000225. Also, number of rationals in [0, 1) whose binary expansions consist just of repeating bits of (least) period exactly n (i.e., there's no preperiodic part), where 0 = 0.000... is considered to have period 1. - Brad Chalfan (brad(AT)chalfan.net), May 29 2006

Crossrefs

A027375, A038199 and A056267 are all essentially the same sequence with different initial terms.
Cf. A059966 (a(n)/n).

Programs

  • Haskell
    a038199 n = sum [a008683 (n `div` d) * (a000225 d)| d <- a027750_row n]
    -- Reinhard Zumkeller, Feb 17 2013
    
  • Mathematica
    Table[Plus@@((2^Divisors[n]-1)MoebiusMu[n/Divisors[n]]),{n,1,31}] (* Brad Chalfan (brad(AT)chalfan.net), May 29 2006 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(2^d-1)); \\ Michel Marcus, Jun 28 2017
  • Python
    from sympy import mobius, divisors
    def a(n): return sum(mobius(n//d) * (2**d - 1) for d in divisors(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 28 2017
    

Formula

a(n) = Sum_{d | n} mu(n/d)*(2^d-1). - Paul Barry, Mar 20 2005
Lambert g.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/((1 - x)*(1 - 2*x)). - Ilya Gutkovskiy, Apr 25 2017
O.g.f.: Sum_{d >= 1} mu(d)*x^d/((1 - x^d)*(1 - 2*x^d)). - Petros Hadjicostas, Jun 18 2019

Extensions

Better description from Michael Somos
More terms from Naohiro Nomoto, Sep 10 2001
More terms from Brad Chalfan (brad(AT)chalfan.net), May 29 2006