A038221 Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*3^j.
1, 3, 3, 9, 18, 9, 27, 81, 81, 27, 81, 324, 486, 324, 81, 243, 1215, 2430, 2430, 1215, 243, 729, 4374, 10935, 14580, 10935, 4374, 729, 2187, 15309, 45927, 76545, 76545, 45927, 15309, 2187, 6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561
Offset: 0
Examples
Triangle begins as: 1; 3, 3; 9, 18, 9; 27, 81, 81, 27; 81, 324, 486, 324, 81; 243, 1215, 2430, 2430, 1215, 243; 729, 4374, 10935, 14580, 10935, 4374, 729; 2187, 15309, 45927, 76545, 76545, 45927, 15309, 2187; 6561, 52488, 183708, 367416, 459270, 367416, 183708, 52488, 6561;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
Links
- Indranil Ghosh, Rows 0..100 of triangle, flattened
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
Crossrefs
Programs
-
GAP
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*3^(i-j)*3^j))); # Muniru A Asiru, Jul 23 2018
-
Haskell
a038221 n = a038221_list !! n a038221_list = concat $ iterate ([3,3] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Magma
[3^n*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2022
-
Mathematica
(* programs from Zagros Lalo, Jul 23 2018 *) t[0, 0]=1; t[n_, k_]:= t[n, k]= If[n<0 || k<0, 0, 3 t[n-1, k] + 3 t[n-1, k-1]]; Table[t[n, k], {n,0,10}, {k,0,n}]//Flatten Table[CoefficientList[Expand[3^n *(1+x)^n], x], {n,0,10}]//Flatten Table[3^n Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* End *)
-
SageMath
def A038221(n,k): return 3^n*binomial(n,k) flatten([[A038221(n,k) for k in range(n+1)] for n in range(10)]) # G. C. Greubel, Oct 17 2022
Formula
G.f.: 1/(1 - 3*x - 3*x*y). - Ilya Gutkovskiy, Apr 21 2017
T(0,0) = 1; T(n,k) = 3 T(n-1,k) + 3 T(n-1,k-1) for k = 0...n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 23 2018
From G. C. Greubel, Oct 17 2022: (Start)
T(n, k) = T(n, n-k).
T(n, n) = A000244(n).
T(n, n-1) = 3*A027471(n).
T(n, n-2) = 9*A027472(n+1).
T(n, n-3) = 27*A036216(n-3).
T(n, n-4) = 81*A036217(n-4).
T(n, n-5) = 243*A036219(n-5).
Sum_{k=0..n} T(n, k) = A000400(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A030195(n+1), n >= 0.
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A057083(n).
T(n, k) = 3^k * A027465(n, k). (End)
Comments