cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038504 Sum of every 4th entry of row n in Pascal's triangle, starting at "n choose 1".

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 28, 64, 136, 272, 528, 1024, 2016, 4032, 8128, 16384, 32896, 65792, 131328, 262144, 523776, 1047552, 2096128, 4194304, 8390656, 16781312, 33558528, 67108864, 134209536, 268419072, 536854528, 1073741824
Offset: 0

Views

Author

Keywords

Comments

Number of strings over Z_2 of length n with trace 1 and subtrace 0.
Same as number of strings over GF(2) of length n with trace 1 and subtrace 0.
From Gary W. Adamson, Mar 13 2009: (Start)
M^n * [1,0,0,0] = [A038503(n), A000749(n), A038505(n), a(n)]; where
M = a 4x4 matrix [1,1,0,0; 0,1,1,0; 0,0,1,1; 1,0,0,1]. Sum of terms = 2^n
Example: M^6 * [1,0,0,0] = [16, 20, 16, 12], Sum = 2^6 = 64. (End)
{A038503, A038504, A038505, A000749} is the difference analog of the hyperbolic functions {h_1(x), h_2(x), h_3(x), h_4(x)} of order 4. For the definitions of {h_i(x)} and the difference analog {H_i (n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Jul 31 2017

Examples

			a(2;1,0) = 3 since the two binary strings of trace 1, subtrace 0 and length 2 are { 10, 01 }.
		

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Magma
    [0] cat [n le 3 select n else 4*Self(n-1) -6*Self(n-2) + 4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Mathematica
    CoefficientList[Series[x(1-x)^2/((1-2x)(1-2x+2x^2)),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
    LinearRecurrence[{4,-6,4},{0,1,2,3},40] (* Harvey P. Dale, Aug 23 2017 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A038504
        if (n<4): return n
        else: return 4*a(n-1) - 6*a(n-2) + 4*a(n-3)
    [a(n) for n in range(51)] # G. C. Greubel, Apr 20 2023

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3. - Paul Curtz, Mar 01 2008
G.f.: x*(1-x)^2/((1-2*x)*(1-2*x+2*x^2)).
From Paul Barry, Jul 25 2004: (Start)
Binomial transform of x/(1-x^4).
G.f.: x*(1-x)^2/((1-x)^4 - x^4) = x/(1-2*x) - x^3/((1-x)^4 - x^4).
a(n) = Sum_{k=0..floor(n/4)} binomial(n, 4*k+1).
a(n) = Sum_{k=0..n} binomial(n, k)*(sin(Pi*k/2)/2 + (1 - (-1)^k)/4).
a(n) = 2^(n-2) + 2^((n-2)/2)*sin(Pi*n/4) - 0^n/4. (End)
a(n; t, s) = a(n-1; t, s) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.
(1, 2, 3, 4, 6, ...) is the binomial transform of (1, 1, 0, 0, 1, 1, ...). - Gary W. Adamson, May 15 2007
From Vladimir Shevelev, Jul 31 2017: (Start)
For n >= 1, {H_i(n)} are linearly dependent sequences: a(n) = H_2(n) = H_1(n) + H_3(n) - H_4(n);
a(n+m) = a(n)*H_1(m) + H_1(n)*a(m) + H_4(n)*H_3(m) + H_3(n)*H_4(m), where H_1 = A038503, H_3 = A038505, H_4 = A000749.
For proofs, see Shevelev's link, Theorems 2, 3. (End)
a(n) = (1/4)*(2^((n+1)/2)*ChebyshevU(n-1, 1/sqrt(2)) + 2^n - [n=0]). - G. C. Greubel, Apr 20 2023