A038566 Numerators in canonical bijection from positive integers to positive rationals <= 1: arrange fractions by increasing denominator then by increasing numerator.
1, 1, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 4, 5, 7, 8, 1, 3, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 5, 7, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 5, 9, 11, 13, 1, 2, 4, 7, 8, 11, 13, 14, 1, 3, 5, 7, 9, 11, 13, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Offset: 1
Examples
The beginning of the list of positive rationals <= 1: 1/1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, .... This is A038566/A038567. The beginning of the triangle giving all positive rationals: 1/1; 1/2, 2/1; 1/3, 3/1; 1/4, 2/3, 3/2, 4/1; 1/5, 5/1; 1/6, 2/5, 3/4, 4/3, 5/2, 6/1; .... This is A020652/A020653, with A020652(n) = A038566(n+1). [Corrected by _M. F. Hasler_, Mar 06 2020] The beginning of the triangle in which n-th row gives numbers between 1 and n that are relatively prime to n: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1: 1 2: 1 3: 1 2 4: 1 3 5: 1 2 3 4 6: 1 5 7: 1 2 3 4 5 6 8: 1 3 5 7 9: 1 2 4 5 7 8 10: 1 3 7 9 11: 1 2 3 4 5 6 7 8 9 10 12: 1 5 7 11 13: 1 2 3 4 5 6 7 8 9 10 11 12 14: 1 3 5 9 11 13 15: 1 2 4 7 8 11 13 14 16: 1 3 5 7 9 11 13 15 17: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18: 1 5 7 11 13 17 19: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20: 1 3 7 9 11 13 17 19 ... Reformatted. - _Wolfdieter Lang_, Jan 18 2017 ------------------------------------------------------
References
- Richard Courant and Herbert Robbins. What Is Mathematics?, Oxford, 1941, pp. 79-80.
- H. Lauwerier, Fractals, Princeton Univ. Press, p. 23.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 163.
Links
Crossrefs
Programs
-
Haskell
a038566 n k = a038566_tabf !! (n-1) !! (k-1) a038566_row n = a038566_tabf !! (n-1) a038566_tabf= zipWith (\v ws -> filter ((== 1) . (gcd v)) ws) [1..] a002260_tabl a038566_list = concat a038566_tabf -- Reinhard Zumkeller, Sep 21 2013, Feb 23 2012
-
Maple
s := proc(n) local i,j,k,ans; i := 0; ans := [ ]; for j while i
-
Mathematica
Flatten[Table[Flatten[Position[GCD[Table[Mod[j, w], {j, 1, w-1}], w], 1]], {w, 1, 100}], 2] row[n_]:=Select[Range[n],GCD[n,#]==1 &]; Array[row,17]//Flatten (* Stefano Spezia, Jul 20 2025 *)
-
PARI
first(n)=my(v=List(),i,j);while(i
Charles R Greathouse IV, Feb 07 2013 -
PARI
row(n) = select(x->gcd(n, x)==1, [1..n]); \\ Michel Marcus, May 05 2020
-
SageMath
def aRow(n): if n == 1: return 1 return [k for k in ZZ(n).coprime_integers(n+1)] print(flatten([aRow(n) for n in range(1, 18)])) # Peter Luschny, Aug 17 2020
Formula
The n-th "clump" consists of the phi(n) integers <= n and prime to n.
a(n+1) = A020652(n) for n > 1. - Georg Fischer, Oct 27 2020
Extensions
More terms from Erich Friedman
Offset corrected by Max Alekseyev, Apr 26 2010
Comments