cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038618 Primes not containing the digit '0'.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 15 1998

Keywords

Comments

Complement of A056709 with respect to primes (A000040). - Lekraj Beedassy, Jul 04 2010
Maynard proves that this sequence is infinite and in particular contains the expected number of elements up to x, on the order of x^(log 9/log 10)/log x. - Charles R Greathouse IV, Apr 08 2016

Crossrefs

Subsequence of A000040 (primes), A052382 (zeroless numbers) and A195943.
Primes having no digit d = 0..9 are this sequence, A038603, A038604, A038611, A038612, A038613, A038614, A038615, A038616, and A038617, respectively.

Programs

  • Haskell
    a038618 n = a038618_list !! (n-1)
    a038618_list = filter ((== 1) . a168046) a000040_list
    -- Reinhard Zumkeller, Apr 07 2014, Sep 27 2011
    
  • Magma
    [ p: p in PrimesUpTo(300) | not 0 in Intseq(p) ];  // Bruno Berselli, Aug 08 2011
    
  • Mathematica
    Select[Prime[Range[70]], DigitCount[#, 10, 0] == 0 &] (* Vincenzo Librandi, Aug 09 2011 *)
  • PARI
    is(n)=if(isprime(n),n=vecsort(eval(Vec(Str(n))),,8);n[1]>0) \\ Charles R Greathouse IV, Aug 09 2011
    
  • PARI
    lista(nn) = forprime (p=2, nn, if (vecmin(digits(p)), print1(p, ", "))); \\ Michel Marcus, Apr 06 2016
    
  • PARI
    next_A038618(n)=until(vecmin(digits(n=nextprime(next_A052382(n)))),);n \\ Cf. OEIS Wiki page (LINKS) for other programs. - M. F. Hasler, Jan 12 2020
    
  • Python
    from sympy import primerange
    def aupto(N): return [p for p in primerange(1, N+1) if '0' not in str(p)]
    print(aupto(300)) # Michael S. Branicky, Mar 11 2022

Formula

Intersection of A052382 (zeroless numbers) and A000040 (primes); A168046(a(n))*A010051(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) ≍ n^(log 10/log 9) log n. - Charles R Greathouse IV, Aug 03 2023