cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038663 [ n/F_2 ] + [ n/F_3 ] + [ n/F_4 ] +..., F_n=Fibonacci numbers.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 13, 16, 18, 21, 22, 25, 27, 29, 32, 35, 36, 39, 40, 43, 46, 48, 49, 53, 55, 58, 60, 62, 63, 67, 68, 71, 73, 76, 78, 81, 82, 84, 87, 91, 92, 96, 97, 99, 102, 104, 105, 109, 110, 113, 115, 118, 119, 122, 125, 128, 130, 132, 133, 137, 138, 140, 143, 146
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

Keywords

Examples

			a(15)=[ 15/1 ]+[ 15/2 ]+[ 15/3 ]+[ 15/5 ]+[ 15/8 ]+[ 15/13 ]+[ 15/21 ]+...=32.
		

Crossrefs

Cf. A005086.

Programs

  • Magma
    [&+[Floor(n/Fibonacci(k+2)):k in [0..n]]:n in [1..64]]; // Marius A. Burtea, Jul 16 2019
  • Maple
    with(combinat): for n from 1 to 200 do printf(`%d,`,sum(floor(n/fibonacci(k)), k=2..15)) od:
  • Mathematica
    Table[Sum[Floor[n/Fibonacci[k] ],{k,2,200}],{n,70}] (* Harvey P. Dale, Jul 21 2021 *)
    Table[Sum[Floor[n/Fibonacci[k]], {k, 2, Log[Sqrt[5]*n]/Log[GoldenRatio] + 1}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 30 2021 *)

Formula

G.f.: (1/(1 - x)) * Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Jul 16 2019
Conjecture: a(n) ~ c * n, where c = A079586 - 1. - Vaclav Kotesovec, Aug 30 2021

Extensions

More terms from Simon Plouffe, who points out that the first differences give A005086
More terms from James Sellers, Feb 19 2001