A038663 [ n/F_2 ] + [ n/F_3 ] + [ n/F_4 ] +..., F_n=Fibonacci numbers.
1, 3, 5, 7, 9, 12, 13, 16, 18, 21, 22, 25, 27, 29, 32, 35, 36, 39, 40, 43, 46, 48, 49, 53, 55, 58, 60, 62, 63, 67, 68, 71, 73, 76, 78, 81, 82, 84, 87, 91, 92, 96, 97, 99, 102, 104, 105, 109, 110, 113, 115, 118, 119, 122, 125, 128, 130, 132, 133, 137, 138, 140, 143, 146
Offset: 1
Examples
a(15)=[ 15/1 ]+[ 15/2 ]+[ 15/3 ]+[ 15/5 ]+[ 15/8 ]+[ 15/13 ]+[ 15/21 ]+...=32.
Links
- Vaclav Kotesovec, Plot of a(n)/n for n = 1..100000
Crossrefs
Cf. A005086.
Programs
-
Magma
[&+[Floor(n/Fibonacci(k+2)):k in [0..n]]:n in [1..64]]; // Marius A. Burtea, Jul 16 2019
-
Maple
with(combinat): for n from 1 to 200 do printf(`%d,`,sum(floor(n/fibonacci(k)), k=2..15)) od:
-
Mathematica
Table[Sum[Floor[n/Fibonacci[k] ],{k,2,200}],{n,70}] (* Harvey P. Dale, Jul 21 2021 *) Table[Sum[Floor[n/Fibonacci[k]], {k, 2, Log[Sqrt[5]*n]/Log[GoldenRatio] + 1}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 30 2021 *)
Formula
G.f.: (1/(1 - x)) * Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)). - Ilya Gutkovskiy, Jul 16 2019
Conjecture: a(n) ~ c * n, where c = A079586 - 1. - Vaclav Kotesovec, Aug 30 2021
Extensions
More terms from Simon Plouffe, who points out that the first differences give A005086
More terms from James Sellers, Feb 19 2001