cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038725 a(n) = 6*a(n-1) - a(n-2), n >= 2, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 11, 64, 373, 2174, 12671, 73852, 430441, 2508794, 14622323, 85225144, 496728541, 2895146102, 16874148071, 98349742324, 573224305873, 3340996092914, 19472752251611, 113495517416752, 661500352248901, 3855506596076654, 22471539224211023, 130973728749189484
Offset: 0

Views

Author

Barry E. Williams, May 02 2000

Keywords

Comments

From Wolfdieter Lang, Feb 26 2015: (Start)
The sequence {2*a(n+1)}_{n >= 0}, gives all positive solutions y = y2(n) = 2*a(n+1) of the second class of the Pell equation x^2 - 2*y^2 = -7. For the corresponding terms x = x2(n) see A255236(n).
See A255236 for comments on the first class solutions and the relation to the Pell equation x^2 - 2*y^2 = 14. (End)

Examples

			n = 2: a(3) = sqrt((181^2 + 7)/2)/2 = 64.
a(3) = (53 + 75)/2 = 64. - _Wolfdieter Lang_, Mar 19 2015
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A001653 and A001541. Cf. A001109.
A038723(n) = a(-n).

Programs

  • Maple
    a[0]:=1: a[1]:=2: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    Union[Flatten[NestList[{#[[2]],#[[3]],6#[[3]]-#[[2]]}&,{1,2,11},25]]]  (* Harvey P. Dale, Mar 04 2011 *)
    LinearRecurrence[{6,-1},{1,2},30] (* Harvey P. Dale, Jun 12 2017 *)
  • PARI
    {a(n) = real((3 + 2*quadgen(8))^n * (1 - quadgen(8) / 4))} /* Michael Somos, Sep 28 2008 */
    
  • PARI
    {a(n) = polchebyshev(n, 1, 3) - polchebyshev(n-1, 2, 3)} /* Michael Somos, Sep 28 2008 */

Formula

a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3); a(n) = ((4-sqrt(2))/8)*(3+2*sqrt(2))^(n-1)+((4+sqrt(2))/8)*(3-2*sqrt(2))^(n-1). - Antonio Alberto Olivares, Mar 29 2008
From Michael Somos, Sep 28 2008: (Start)
Sequence satisfies -7 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 6*u*v.
G.f.: (1 - 4*x) / (1 - 6*x + x^2). a(n) = (7 + a(n-1)^2) / a(n-2). (End)
From Wolfdieter Lang, Feb 26 2015: (Start)
a(n) = S(n, 6) - 4*S(n-1, 6), n>=0, with the Chebyshev polynomials S(n, x) (A049310), with S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n-1). See the g.f. and the Pell equation comment above.
a(n) = 6*a(n-1) - a(n-2), n >= 1, a(-1) = 4, a(0) = 1. (See the name.) (End)
From Wolfdieter Lang, Mar 19 2015: (Start)
a(n+1) = sqrt((A255236(n)^2 + 7)/2)/2, n >= 0.
a(n+1) = (A038761(n) + A038762(n))/2, n >= 0. See the Mar 19 2015 comment on A054490. (End)
E.g.f.: exp(3*x)*(4*cosh(2*sqrt(2)*x) - sqrt(2)*sinh(2*sqrt(2)*x))/4. - Stefano Spezia, May 01 2020