A038764 a(n) = (9*n^2 + 3*n + 2)/2.
1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, 562, 667, 781, 904, 1036, 1177, 1327, 1486, 1654, 1831, 2017, 2212, 2416, 2629, 2851, 3082, 3322, 3571, 3829, 4096, 4372, 4657, 4951, 5254, 5566, 5887, 6217, 6556, 6904, 7261, 7627, 8002, 8386, 8779, 9181
Offset: 0
References
- J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774.
- A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3, -3, 1}, {1, 7, 22}, 50] (* Paolo Xausa, Jul 03 2025 *)
-
PARI
a(n)=n*(9*n+3)/2+1 \\ Charles R Greathouse IV, Jun 17 2017
-
PARI
Vec((1 + 2*x)^2 / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 22 2018
-
Sage
a = lambda n: hypergeometric([-n, -2], [1], 3) print([simplify(a(n)) for n in range(46)]) # Peter Luschny, Nov 19 2014
Formula
a(n) = binomial(n,0) + 6*binomial(n,1) + 9*binomial(n,2).
From Paul Barry, Mar 15 2003: (Start)
G.f.: (1 + 2*x)^2/(1 - x)^3.
Binomial transform of (1, 6, 9, 0, 0, 0, ...). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Colin Barker, Jan 22 2018
a(n) = a(n-1) + 3*(3*n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = hypergeometric([-n, -2], [1], 3). - Peter Luschny, Nov 19 2014
E.g.f.: exp(x)*(2 + 12*x + 9*x^2)/2. - Stefano Spezia, Mar 07 2023
Extensions
More terms from James Sellers, May 03 2000
Entry revised by N. J. A. Sloane, Jan 23 2018
Comments