cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049288 Number of nonisomorphic circulant tournaments, i.e., Cayley tournaments for cyclic group of order 2n-1.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 16, 16, 30, 88, 94, 205, 457, 586, 1096, 3280, 5472, 7286, 21856, 26216, 49940, 174848, 182362, 399472, 1048576, 1290556, 3355456, 7456600, 9256396, 17895736, 59654816, 89478656, 130150588, 390451576, 490853416, 954437292
Offset: 1

Views

Author

Keywords

Comments

Further values for prime-squared orders can be found in A038789.
There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.

Crossrefs

Formula

a(n) <= A002086(n). - Andrew Howroyd, Apr 28 2017
a(n) = A002086(n) for squarefree 2n-1. - Andrew Howroyd, Apr 28 2017

Extensions

a(14)-a(37) from Andrew Howroyd, Apr 28 2017
Reference to Alspach (1970) corrected by Andrew Howroyd, Apr 28 2017

A038785 Number of nonisomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.

Original entry on oeis.org

3, 214, 399472, 10481104587335128, 123992391755402970674764, 81988033818127290961563099285346969398730, 4480981113642949878240780781141254929604041319893664
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Comments

a(p^2)=A038789(p^2) for p=4k-1

Crossrefs

Cf. A049309.

Extensions

More terms from Valery A. Liskovets, May 09 2001

A038791 An intermediate sequence for nonisomorphic circulant p^2-tournaments, indexed by odd primes p.

Original entry on oeis.org

2, 4, 12, 104, 344, 4096, 14572, 190652, 9586984, 35791472, 1908874584, 27487790720, 104715393912, 1529755308212, 86607685141744, 4969489243995032, 19215358410149344, 1117984489315857512, 16865594581677305360, 65588423373189982912
Offset: 2

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Comments

Number of subsets of {1, ..., p} with product = 1 mod p, where p is the n-th prime. - Charles R Greathouse IV, Jun 06 2013
Also : Number of subsets of {1, ..., p} with product = -1 mod p, where p is the n-th prime. - Ridouane Oudra, Jul 08 2025

Crossrefs

Programs

  • Mathematica
    has[p_] := Module[{v, u}, v = Table[0, {p-1}]; v[[1]] = 1; For[n = 2, n <= p-1, n++, u = Table[0, {p-1}]; For[j = 1, j <= p-1, j++, u[[Mod[j*n, p]]] += v[[j]]]; v += u]; 2*v[[1]]];
    a[n_] := has[Prime[n]];
    Table[a[n], {n, 2, 21}] (* Jean-François Alcover, Aug 30 2019, after Charles R Greathouse IV *)
  • PARI
    has(p)=my(v=vector(p-1),u); v[1]=1; for(n=2,p-1,u=vector(p-1); for(j=1,p-1, u[j*n%p]+=v[j]);v+=u); 2*v[1]
    a(n)=has(prime(n)) \\ Charles R Greathouse IV, Jun 06 2013

Formula

a(p^2) = A038790(p^2) - A038789(p^2) + A038792(p^2).
a(n) = A238446(n) + 1. - Ridouane Oudra, Jul 08 2025

Extensions

More terms from Valery A. Liskovets, May 09 2001
a(12)-a(20) from Charles R Greathouse IV, Jun 06 2013

A038790 Circulant p^2-tournaments up to rotations only, indexed by odd primes p.

Original entry on oeis.org

4, 208, 399480, 10481104587335216, 123992391755346585462944, 81988033818127290961528376002383682011136, 4480981113642949878240780781141254929604041319907336
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Crossrefs

Extensions

More terms from Valery A. Liskovets, May 09 2001
Offset corrected by Sean A. Irvine, Feb 14 2021
Showing 1-4 of 4 results.