cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038789 Number of nonisomorphic circulant p^2-tournaments, indexed by odd primes p.

Original entry on oeis.org

3, 205, 399472, 10481104587335128, 123992391755346585462636, 81988033818127290961528376002383682007296, 4480981113642949878240780781141254929604041319893664
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Crossrefs

Extensions

More terms from Valery A. Liskovets, May 09 2001
Offset corrected by Sean A. Irvine, Feb 14 2021

A038786 Circulant self-complementary directed p^2-graphs up to rotations only, indexed by odd primes p.

Original entry on oeis.org

4, 216, 399480, 10481104587335216, 123992391755402970675056, 81988033818127290961563099285346969402464, 4480981113642949878240780781141254929604041319907336
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Comments

a(p^2)=A038790(p^2) for p=4k-1

Crossrefs

Cf. A038785.

Extensions

More terms from Valery A. Liskovets, May 09 2001
Offset corrected by Sean A. Irvine, Feb 14 2021

A038787 An intermediate sequence for nonisomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.

Original entry on oeis.org

2, 6, 12, 104, 356, 4134, 14572, 190652, 9588156, 35791472, 1908889156, 27487843256, 104715393912, 1529755308212, 86607687722856, 4969489243995032, 19215358445940816, 1117984489315857512, 16865594581677305360, 65588423375098872068, 3874762242354582408912
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

Crossrefs

Cf. A038785.

Formula

a(p^2) = A038791(p^2) for p=4k-1.
a(p^2) = A038786(p^2) - A038785(p^2) + A038788(p^2).

Extensions

More terms from Valery A. Liskovets, May 09 2001
More terms and offset corrected by Sean A. Irvine, Feb 14 2021

A038788 Non-Cayley-isomorphic circulant self-complementary directed p^2-graphs, indexed by odd primes p.

Original entry on oeis.org

1, 4, 4, 16, 64, 400, 900, 8836, 355216, 1201216, 53523856, 690217984, 2494003600, 33255899044, 1666350520384, 85680866908816, 320296595636224, 16939175556745744, 240937075998869056, 910964509740273664, 49676441991516395584, 719170624451273114176
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2000

Keywords

References

  • V. A. Liskovets and R. Poeschel, Non-Cayley-isomorphic self-complementary circulant graphs, J. Graph Th., 34, 2000, 128-141.

Crossrefs

Formula

a(p^2) = A049309(p)^2.
a(p^2) = A054246(p^2) for p=4k-1.
a(p^2) = ( (1/(p-1)) * Sum_{r|p-1 and r even} phi(r) * 2^((p-1)/r) )^2. - Sean A. Irvine, Feb 14 2021

Extensions

More terms from Valery A. Liskovets, May 09 2001
More terms and offset corrected by Sean A. Irvine, Feb 14 2021

A049309 Number of nonisomorphic self-complementary circulant digraphs (Cayley digraphs for the cyclic group) of order 2n-1.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 8, 20, 20, 30, 88, 94, 214, 457, 596, 1096, 3280, 5560, 7316, 21944, 26272, 49940
Offset: 1

Views

Author

Keywords

Comments

There is an easy formula for prime orders. Formulae are also known for squarefree and prime-squared orders.
Further values for squarefree and prime-squared orders can be found in the Liskovets reference.

Crossrefs

Extensions

a(14)-a(22) from Andrew Howroyd, May 06 2017

A061846 Number of nonisomorphic circulant self-complementary undirected p^2-graphs, indexed by odd primes p.

Original entry on oeis.org

0, 7, 0, 0, 56385212104, 34723282963287391306, 0, 0, 4052966889953709463435884686101848534440236122250196723623360, 0, 13451920373440265528873527210621286955685558541949847056456390996779593127771039129346153481541036040
Offset: 3

Views

Author

Valery A. Liskovets, May 09 2001

Keywords

Comments

a(p^2)=0 for p=4k-1

References

  • V. A. Liskovets and R. Poeschel, Non-Cayley-isomorphic self-complementary circulant graphs, J. Graph Th., 34, 2000, 128-141.

Crossrefs

Extensions

More terms from Sean A. Irvine, Mar 09 2023
Showing 1-6 of 6 results.